The study of the rare decays $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ at $\sqrt{s} = 13$ TeV with the ATLAS detector

Mazuza Ghneimat for the ATLAS Collaboration JHEP04(2019)098

Strongly suppressed flavour-changing neutral-current processes, predicted in the Standard Model (SM)

$$\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$$

Deviations from the SM prediction may indicate new physics that involves non-SM heavy particles.

The branching fractions are measured relative to the reference decay mode $B^{\pm} \rightarrow J/\psi \ (\rightarrow \mu^{+}\mu^{-})K^{\pm}$

world averages, PDG: $(1.010 \pm 0.029) \times 10^{-3} \times (5.961 \pm 0.033) \times 10^{-2}$

 $\mathcal{D}_{\text{ref}} = N_{J/\psi K^+} \times (\varepsilon_{\mu^+\mu^-}/\varepsilon_{J/\psi K^+})$

Reference channel yield from UML fit to mJ/\suketimes K

Ratio of efficiencies evaluated on MC tuned to data

 $f_s/f_d = 0.256 \pm 0.013$; $f_u/f_d = 1$

the ratio of the hadronisation probabilities of a *b*-quark into B^+ and $B^0_{(s)}$

Blinded dimuon invariant mass region [5166 MeV, 5526 MeV].

Background processes

▶ Continuum background

- consists of muons from uncorrelated hadron decays.
- ▶ Boosted Decision Tree (BDT) to reject this background is trained on sideband data.

Partially reconstructed B decays

- ▶same-vertex ($B \rightarrow \mu^+\mu^- X$), same-side ($b \rightarrow c\mu v \rightarrow s(d)\mu\mu\nu\nu$) and B_c decays.
- exponential in the low mass sideband.

▶ Semi-leptonic *B* decays

$$B^0 \rightarrow \pi^- \mu^+ \nu$$
, $B^0_s \rightarrow K^- \mu^+ \nu$, $\Lambda^0_b \rightarrow p \mu^- \bar{\nu}$

charged hadron misidentified as muon.

▶ Peaking background *B* → *hh*′

- both hadrons misidentified as muons.
- presents in the $m_{\mu\mu}$ -signal region.

Reference channel

- ▶ B[±] yield is extracted from unbinned extended maximum-likelihood fit to the *J/ψK* ± invariant mass:
 - $B^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow J/\psi \pi^+$ decays: modelled by the sum of Johnson Su and Gaussian
 - ▶ Partially reconstructed $B \rightarrow J/\psi X$ decays: combination of Fermi-Dirac and exponential

 B^{\pm} yield: 33435 \pm 0.3% (stat) \pm 4.8% (sys)

Efficiency ratio

- Estimated from MC in fiducial region with
- ▶p_T(*B*) > 8 GeV, $|η_B|$ < 2.5

functions.

- ▶p_T(μ _L) > 6 GeV, p_T(μ _T) > 4 GeV, lη μ _{L,T}I < 2.5
- $p_T(K) > 1 \text{ GeV}, |\eta_K| < 2.5$
- $\varepsilon_{\text{J/\PsiK}}/\varepsilon_{\mu\mu} = 0.1176 \pm 0.0009 \text{ (stat)}$

 ± 0.0047 (sys)

Signal yield

- Extracted with unbinned maximumlikelihood fit to $m_{\mu\mu}$ simultaneously across four intervals of BDT
- each of 18% of signal MC events.
- BDT boundaries:
- 0.1439, 0.2455, 0.3312, 0.4163, 1.

ATLAS-EXPERIMENT

Extracted (expected) yields

ErUM-FSP T02

ATLAS

 $N_s = 80 \pm 22 (91), N_d = -12 \pm 20 (10)$

Results

▶ Branching fractions using 2015+2016 data

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.21^{+0.96+0.49}_{-0.91-0.30}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10}$$
 @ 95% CL

▶ Combination with Run1

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ @ 95% CL