

Searches for CP violation in charmless b-baryon decays at LHCb

Matteo Bartolini (Univ. and INFN Genova)

On behalf of the LHCb collaboration

40th International Conference on High Energy Physics
Prague, 28 July-6 August 2020

- CPV established in K, B and D meson decays and well consistent with SM prediction
- CPV not yet observed in b-baryon decays, despite some interesting indications of non vanishing CP asymmetries [Nature Physics 13 (2017) 391].
- Λ_b^0 and Ξ_b^0 production is abundant in proton-proton collisions at the LHC. This gives the LHCb experiment the opportunity to study multi-body decays of b-flavoured baryons
- Multi-body final states can have a rich resonant structure: interference can enhance CPV

In this talk:

Search for CP violation in $X_b^0 \to phh'h''$ charmless decays, where X_b^0 stands for Λ_b^0 or Ξ_b^0 and h,h',h'' either for a pion or a kaon

Two approaches: TPA and direct CPV

 direct CPV is measured as the asymmetry between the decay rate of a baryon and its charge-conjugate state

$$A^{CP} = \frac{\Gamma(X_b^0 \to f) - \Gamma(\bar{X}_b^0 \to \bar{f})}{\Gamma(X_b^0 \to f) + \Gamma(\bar{X}_b^0 \to \bar{f})}$$

Triple product asymmetries (TPA)

Build a $\hat{T}-odd$ observable combining the momentum $\vec{p_i}$ of three final state particles in the mother C.M frame: $C_{\hat{T}}=\vec{p_p}\cdot(\vec{p_h}\times\vec{p_{h'}})$, $\overline{C}_{\hat{T}}=\vec{p_{\bar{p}}}\cdot(\vec{p_{\bar{h}}}\times\vec{p_{\bar{h'}}})$:

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}$$

$$\overline{A}_{\hat{T}} = \frac{\overline{N}(-\overline{C}_{\hat{T}} > 0) - \overline{N}(-\overline{C}_{\hat{T}} < 0)}{\overline{N}(-\overline{C}_{\hat{T}} > 0) + \overline{N}(-\overline{C}_{\hat{T}} < 0)}$$

where N and \overline{N} are the total number of X_b^0 and \overline{X}_b^0 decays True CP and P violating observables are defined as:

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} - \overline{A}_{\hat{T}})$$

$$a_P^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} + \overline{A}_{\hat{T}})$$

TPA and direct CPV are complementary:

A. Datta and D.London Int.J.Mod.Phys. A19 (2004) 2505

$$a_{CP} \propto \sin \Delta \delta \sin \Delta \phi$$

$$a_{CP}^{\hat{T}-odd} \propto \cos \Delta \delta \sin \Delta \phi$$

- a_{CP} more sensitive to CPV effects when difference in strong phase between interfering amplitudes is large
- a^{T-odd}_{CP} more sensitive to CPV effects when difference in strong phase between interfering is small

Different sensitivity to systematic effects:

 a_{CP}^{T-odd} not affected by reconstruction efficiency and b-hadron production asymmetries \to $A_{\hat{T}}$ and $\overline{A}_{\hat{T}}$ are calculated separately on the same final state

Search for CPV in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ using TPA

Triple product are calculated in the Λ_h^0 rest frame:

G.Durieux, JHEP 10 (2016) 005 G.Durieux, PRD 92 (2015) 07601

$$\begin{split} & C_{\hat{T}} = \vec{p}_p \cdot (\vec{p}_{\pi_{fast}} \times \vec{p}_{\pi^+}) \propto \sin \Phi \\ & \overline{C}_{\hat{T}} = \vec{p}_{\bar{p}} \cdot (\vec{p}_{\pi_{fast}} \times \vec{p}_{\pi^-}) \propto \sin \Phi \end{split}$$

Very rich resonant structure in the decay, dominant contributions proceed through:

$$\Lambda_b^0 o N^{*+}\pi^-$$
 , $N^{*+} o \Delta^{++}$ (1234) π^- , $\Delta^{++} o p\pi^+$

$$\Lambda_b^0 \to \rho a_1^-(1260), \ a_1^-(1260) \to \rho^0(770) \pi^-, \ \rho^0(770) \to \pi^+\pi^-$$

Search for CPV in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ using TPA

Integrated luminosity of 3 fb⁻¹ collected in 2011 and 2012 at \sqrt{s} of 7 TeV and 8 TeV

Phase space integrated asymmetry

$$\begin{array}{ll} a_{CP}^{\hat{T}-odd}=(1.15\pm1.45\pm0.32)\% & \text{Consistent with CP symmetry} \\ a_{P}^{\hat{T}-odd}=(-3.71\pm1.45\pm0.32)\% & \text{Consistent with P symmetry} \end{array}$$

Consistent with P symmetry

Asymmetries in regions of the phase space

Binning on resonances: $\Delta^{++}, \rho(770), N^*$

Binning angle between planes: $p \pi_{fast}$ and $\pi^+ \pi_{slow}$

First evidence for local CPV at the 3.3 σ level in the baryonic sector

Search for CPV in Λ_b^0 decaying to $pK^-\pi^+\pi^-$, $pK^-K^+K^-$ and in $\Xi_b^0 \to pK^-\pi^+\pi^-$ using TPA

→ JHEP 08 (2018) 039

Integrated luminosity of 3 fb⁻¹ collected in 2011 and 2012 at \sqrt{s} of 7 TeV and 8 TeV

Phase space integrated asymmetry

	$\Lambda_b^0 \rightarrow p K^- \pi^+ \pi^-$	$\Lambda_b^0 \rightarrow pK^-K^+K^-$	$\Xi_b^0 \rightarrow pK^-K^-\pi^+$
$a_P^{\widehat{T}\text{-odd}}$ (%)		$-1.56 \pm 1.51 \pm 0.32$	$-3.04 \pm 5.19 \pm 0.36$
$a_{CP}^{\widehat{T}\text{-odd}}$ (%)	$-0.81 \pm 0.84 \pm 0.31$	$1.12 \pm 1.51 \pm 0.32$	$-3.58 \pm 5.19 \pm 0.36$

Asymmetries in regions of the phase space

$$\begin{array}{c} {\color{red} \Lambda_b^0 \rightarrow pK^-\pi^+\pi^-} \\ {\color{red} 20} \\ {\color{red} \frac{1}{9}} \\$$

Binning on resonances:
$$\Delta(1232)^{++}$$
, $f_0(980)$, $\overline{K}^*(892)$, ϕ

Binning angle between planes: ph and h'h''

No evidence for CPV in these channels

Search for CPV in $\Lambda_b^0 o p\pi^-\pi^+\pi^-$ using TPA, new measurement

arXiv:1912.10741, submitted to Phys. Rev. Lett.

- Integrated luminosity of 6.6 fb^{-1} collected from 2011 to 2017 at \sqrt{s} of 7, 8 and 13 TeV
- Optimised selection
- Yields 4 time larger than the previous (Run1) analysis [Nature Physics volume 13, 391–396(2017)]
- 2 independent methods:
 - TPA with optimized binning scheme (approximate amplitude analysis) to maximize local sensitivity to CPV effects
 - 16 bins on polar and azimuthal angles of proton in the Δ^{++} frame
 - 10 bins on Φ angle between decay planes $\pi^+\pi^-_{slow}$ and $p\pi^-_{fast}$
 - Unbinned energy test

Integrated measurement:

$$a_{CP}^{\hat{T}-odd} = (-0.7 \pm 0.7 \pm 0.2)\%$$
 consistent with CP symmetry $a_{CP}^{\hat{T}-odd} = (-4.0 \pm 0.7 \pm 0.2)\%$ 5.5 σ deviation from P symmet

 $a_D^{\hat{T}-odd} = (-4.0 \pm 0.7 \pm 0.2)\%$ 5.5 σ deviation from P symmetry

• Cut on $m(p\pi^+\pi^-_{slow})$ invariant mass:

$$->2.8~{\rm GeV}/c^2$$
 to enhance the $\Lambda_b^0\to pa_1^-(\to\rho\pi^-)$ (A1 and B1 schemes) $-<2.8~{\rm GeV}/c^2$ to enhance the $\Lambda_b^0\to N^*(\Delta^{++}\pi^-)\pi^-$ (A2 and B2 schemes)

No evidence for CPV, highest significance 2.9σ in B2

Energy test method

- Model-independent unbinned test
- Method sensitive to local differences between two samples

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{\overline{n}} \sum_{j=1}^{\overline{n}} \psi_{ij}$$

 $\psi_{ij}=e^{-d_{ij}^2/2\delta^2}$, d_{ij} Euclidean distance between two candidates in the phase space

$${\bf PHS}: \ m^2(p\pi^+), \ m^2(\pi^+\pi^-_{slow}), \ m^2(p\pi^+\pi^-_{slow}), \ m^2(\pi^+\pi^-_{slow}\pi^-_{fast}), \ m^2(p\pi^-_{slow})$$

 δ is the distance scale (free parameter)

 T large when significant localized differences between samples exist and has an expectation of 0 when there is no difference

Energy test method

ration arXiv:1912.10741, submitted to Phys. Rev. Lett.

		C	
	I Particle, C _T >0	$ ext{IV}$ Anti-Particle, $\overline{ ext{-C}_{ ext{T}}}$ <0	
P	\prod Particle, $C_T < 0$	$ \prod_{\text{Anti-Particle, } -\overline{C_T} > 0} $	
ببلمي	aa aalaulatad fau 2	different velves of	

3 Tests:

- CP test
 - P-odd: I+IV vs II+III
 - P-even: I+II vs III+IV
- P test: I+III vs II+IV

p-values calculated for 3 different values of δ :

Distance scale δ	$1.6 \; {\rm GeV^2}/c^4$	$2.7 \; { m GeV^2}/c^4$	$13 \ \mathrm{GeV^2}/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	2.7×10^{-3}	1.3×10^{-2}
p-value (CP conservation, P odd)	1.5×10^{-1}	6.9×10^{-2}	6.5×10^{-2}
p-value (P conservation)	1.3×10^{-7}	4.0×10^{-7}	1.6×10^{-1}

- Combined significance $< 3.0 \sigma$ in *CP*, *P*-even test
- 5.3 σ significance in P test

Search for CP asymmetries in charmless Λ_b^0 and Ξ_b^0 decays

► Eur. Phys. J. C79 (2019) 745

- Integrated luminosity of 3 fb^{-1} pp collisions collected in 2011 and 2012 at \sqrt{s} of 7 TeV and 8 TeV
- Six decays studied:

2
$$\Lambda_b^0 \to pK^-\pi^+\pi^-$$

5
$$\Xi_b^0 \to pK^-\pi^+\pi^-$$

6
$$\Xi_{L}^{0} \to pK^{-}\pi^{+}K^{-}$$

- CP-asymmetries measured for 18 decay channels (full phase space or in specific regions of the decay phase space)
- Clear experimental signature:
 - $-\,$ 4 charged tracks with high IP wrt PV
 - Ξ_b^0 candidates are required to form a vertex with good fit quality
 - Ξ_b^0 vertex significantly separated from any PV
 - PID assigned using informations from the RICH

→ Eur. Phys. J. C79 (2019) 745

CP asymmetry defined as:

$$A^{CP} = \frac{\Gamma(X_b^0 \to f) - \Gamma(\bar{X}_b^0 \to \bar{f})}{\Gamma(X_b^0 \to f) + \Gamma(\bar{X}_b^0 \to \bar{f})}$$

- Experimental charge-asymmetric effects such as track detection efficiency and b-baryon production asymmetries
- Use charmed-control channels with similar kinematics and no CP violation

Control channel
$\Lambda_b^0 \to (\Lambda_c^+ \to p \pi^- \pi^+) \pi^-$
$\Lambda_b^0 o (\Lambda_c^+ o p K^- \pi^+) \pi^-$
$\varLambda_b^0 \to (\varLambda_c^+ \to p \pi^- \pi^+) \pi^-$
$\Lambda_b^0 \to (\Lambda_c^+ \to p K^- \pi^+) \pi^-$
$\Xi_b^0 o (\Xi_c^+ o p K^- \pi^+) \pi^-$
$\varXi_b^0 \to (\varXi_c^+ \to p K^- \pi^+) \pi^-$

The following CP-violating observable is measured:

$$\Delta A^{CP} = A_{no-c}^{CP} - A_c^{CP}$$

Phase space integrated asymmetry

LHCb

► Eur. Phys. J. C79 (2019) 745

- Simultaneous UML fit \to data are split according to the charge of the proton to extract the raw asymmetries A^{CP}_{no-c}
- Main components:
 - Signal
 - Combinatorial background
 - \bullet Partially reconstructed five-body X_b^0 decays
 - Signal and background cross-feeds
 - Four and five body decays of B mesons

The integrated ΔA^{CP} asymmetry differences are measured to be:

$$\begin{split} &\Delta\mathcal{A}^{CP}(\Lambda_b^0\to p\pi^-\pi^+\pi^-) = (+1.1\pm 2.5\pm 0.6)\,\%,\\ &\Delta\mathcal{A}^{CP}(\Lambda_b^0\to pK^-\pi^+\pi^-) = (+3.2\pm 1.1\pm 0.6)\,\%,\\ &\Delta\mathcal{A}^{CP}(\Lambda_b^0\to pK^-K^+\pi^-) = (-6.9\pm 4.9\pm 0.8)\,\%,\\ &\Delta\mathcal{A}^{CP}(\Lambda_b^0\to pK^-K^+K^-) = (+0.2\pm 1.8\pm 0.6)\,\%,\\ &\Delta\mathcal{A}^{CP}(\Xi_b^0\to pK^-\pi^+\pi^-) = (-17\,\pm\,11\pm\,1)\,\%,\\ &\Delta\mathcal{A}^{CP}(\Xi_b^0\to pK^-\pi^+K^-) = (-6.8\pm 8.0\pm 0.8)\,\%. \end{split}$$

No evidence for CP violation in the phase-space integrated asymmetries

CP asymmetries in phase-space region

▶ Eur. Phys. J. C79 (2019) 745

Asymmetries are also measured in regions of the phase-space to search for local effects of CP violation in Λ_h^0

- Region of low invariant mass on the baryonic pair ($ph < 2 \text{ GeV/c}^2$) and on the pairing of the two other tracks \rightarrow hereafter referred to as LBM (Low 2×2-Body Mass)
- Regions of the phase space that contain specific quasi-two-body or three-body decays

➤ Eur. Phys. J. C79 (2019) 745

LBM:

$$\begin{split} \Delta \mathcal{A}^{CP}(A_b^0 \to p\pi^-\pi^+\pi^-) &= (+3.7 \pm 4.1 \pm 0.5) \,\%, \\ \Delta \mathcal{A}^{CP}(A_b^0 \to pK^-\pi^+\pi^-) &= (+3.5 \pm 1.5 \pm 0.5) \,\%, \\ \Delta \mathcal{A}^{CP}(A_b^0 \to pK^-K^+K^-) &= (+2.7 \pm 2.3 \pm 0.6) \,\%. \end{split}$$

Quasi two body:

$$\begin{split} \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to pa_1(1260)^-) &= (-1.5 \pm 4.2 \pm 0.6) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to N(1520)^0 \rho (770)^0) &= (+2.0 \pm 4.9 \pm 0.4) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to N(1520)^+ \pi^- \pi^-) &= (+0.1 \pm 3.2 \pm 0.6) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \rho K_1(1410)^-) &= (+4.7 \pm 3.5 \pm 0.8) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \Lambda(1520) \rho (770)^0) &= (+0.6 \pm 6.0 \pm 0.5) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to N(1520)^0 K^*(892)^0) &= (+5.5 \pm 2.5 \pm 0.5) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \Lambda(1520) \phi (1020)) &= (+4.4 \pm 2.6 \pm 0.6) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \Lambda(1520) \phi (1020)) &= (+4.3 \pm 5.6 \pm 0.4) \, \%, \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \rho (pK^-)_{\text{high-mass}} \phi (1020)) &= (-0.7 \pm 3.3 \pm 0.7) \, \%. \end{split}$$

No evidence for CPV neither in the LBM region nor in the quasi-two body regions

Summary of this talk:

- Multibody decays are interesting place to search for CPV due to their rich phase space structure
- Two complementary approaches with different sensitivities
- No evidence for CPV in Λ_b^0 and Ξ_b^0 decays at LHCb for the moment, but parity violation observed in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ channel at 5.5 σ level
- ullet Precision of $\sim \%$ already reached in many channels \to expected significant improvement in sensitivity in Run3:
 - LHCb will run at higher instantaneous luminosity
 - Channels with final state hadrons will be selected with higher efficiencies at LHCb after the removal of the L0 hardware trigger