

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS VIRTUAL CONFERENCE LHCb THCp

Lepton Flavour Violation at LHCb

Steffen Weber, on behalf of the LHCb collaboration

ICHEP 2020

Overview

- Motivation
- $B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$ Phys. Rev. Lett. 123 (2019) 241802
- $B^{0}_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$ Phys. Rev. Lett. 123 (2019) 211801
- $B^+ \rightarrow K^+ \mu^- \tau^+ (using B_{s2}^{*0})$ JHEP 06 (2020) 129

Motivation

- Recent tensions with SM discovered by LHCb in $b \rightarrow s \ell \ell$ transitions:
 - Ratios of branching ratios suggesting Lepton Flavour Universality Violations (LFUV)
 Phys. Rev. Lett. 122 (2019) 191801
 - Angular distributions

Phys. Rev. Lett. 125 (2020) 011802

• Extensions of SM to explain LFUV naturally lead to sizable Lepton Flavour Violations

Phys. Rev. Lett. 114 (2015) 091801

- Leptoquarks JHEP 06 (2015) 072
- Heavy gauge boson Z' Phys. Rev. D 92 (2015) 5, 054013
- While for the Standard Model, LFV processes are $\sim O(10^{-54})$
 - → Observation of LFV clear sign of Beyond Standard Model (BSM) physics

...

ICHEP 2020

Selected LHCb results

B⁺→K⁺µ±e∓

Phys. Rev. Lett. 123 (2019) 241802

Model expectations: $O(10^{-10}) - O(10^{-8})$

- Leptoquarks JHEP 06 (2015) 072, JHEP 12 (2016) 027
- Extended gauge bosons Phys. Rev. D92 (2015) 054013
- Neutrino CP violation Phys. Lett. B750 (2015) 367

Best experimental limits so far

 $B^+ \rightarrow K^+ \mu^+ e^-: 13 \times 10^{-8}$ @ 90% C.L. by BaBar PRD73 (2006) 092001 $B^+ \rightarrow K^+ \mu^- e^+: 9.1 \times 10^{-8}$

Analysis Strategy (Run1 data : 3 fb⁻¹ @ 7, 8 TeV)

- Trigger on high p_{T} muon
- 3 charged tracks from common secondary vertex, incompatible with any PV, well identified as K, μ, e (using RICH, calorimeters, muon stations)
- Normalization/ control channel: $B^+ \rightarrow K^+ J/\psi(\rightarrow \mu\mu) / B^+ \rightarrow K^+ J/\psi(\rightarrow ee)$

B⁺→K⁺µ±e∓

Phys. Rev. Lett. 123 (2019) 241802

- Electron Identification
 - Electromagnetic calorimeters
 - Bremsstrahlung deteriorates resolution
 - Energy loss from bremsstrahlung partially recovered
 - Different fit functions for signal peak depending on whether photon recovered or not
- Main backgrounds:
 - Bartially reconstructed B+ decays, e.g. B⁺ → D⁰ (→ Kℓv X) ℓ' v' X'
 → impose mass constraint m(K⁺ℓ⁻)>1885 MeV
 - Charmonium with one lepton misidentified as $K \rightarrow$ mass vetoes
 - 2 BDTs against combinatorial and partially reconstructed background

ICHEP 2020

29.07.2020

ICHEP 2020

 $B^{v}_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$

Phys. Rev. Lett. 123 (2019) 211801

Model expectations: $O(10^{-9}) - O(10^{-5})$

- Heavy neutral gauge boson Eur. Phys. J. C 76 (2016) 134, PRD 92 (2015) 054013
- Leptoquarks JHEP 6 (2015) 72, JHEP 11 (2016) 035, Mod. Phys.Lett. A 33 (2018) 1850019
- Three-site Pati-Salam JHEP 2018 (2018) 148, JHEP 1907 (2019) 168

Best experimental limits so far

- $B^0 \rightarrow \tau^{\pm} \mu^{\mp}$: 2.2×10⁻⁵ @ 90% C.L. by BaBar PRD 77 (2008) 091104
- $B_s^0 \rightarrow \tau^{\pm} \mu^{\mp}$: no experimental limits yet

Analysis strategy (Run1 data : 3 fb⁻¹ @ 7, 8 TeV)

- Trigger on high p_{T} muon
- Reconstruct τ from 3πν decay
- Normalization channel: $B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$

ICHEP 2020

 $B^{o}_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$

Phys. Rev. Lett. 123 (2019) 211801

- Can reconstruct τ momentum with
 2-fold ambiguity via known flight direction,
 τ mass assumption, massless neutrino assumption
- τ decay mainly via a₁ and ρ resonances
 → helps to reduce background

- Same-sign τµ pairs as model for combinatorial background
- Backgrounds from partially reconstructed B decays: distinguish with τ decay time, isolation variables, or suppress with mass vetoes
- B^0 and B^0_s peaks overlap \rightarrow perform search under B^0 - or B^0_s - only hypotheses

29.07.2020

ICHEP 2020

 $B^0_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$

Phys. Rev. Lett. 123 (2019) 211801

• Search performed in bins of final BDT output with increasing signal sensitivity

• No signal observed

B⁺→**K**⁺μ⁻τ⁺ (using B_{s2}^{*0}) JHEP 06 (2020) 129

Model expectations: $O(10^{-9}) - O(10^{-5})$

- Leptoquarks Eur. Phys. J. C76 (2016) 67, PRD95 (2017) 035022, PRD96 (2017) 115011, JHEP 11 (2018) 081
- Three-site Pati-Salam
 Phys. Lett. B779 (2018) 317, JHEP 10 (2018) 148

Best experimental limits so far

2.8×10⁻⁵ @ 90% C.L. by BaBar Phys. Rev. D86 (2012) 012004

Analysis strategy (Run1 and Run2 data : 9 fb⁻¹ @ 7, 8 and 13 TeV)

- Use $B_{s2}^{*0} \rightarrow B^+K^-$ decay: about 1% of B+ production
- K⁺µ⁻ pair from secondary vertex plus additional track t⁺
- Calculate missing mass squared in decay
 → expect peak at τ mass
- K⁺μ⁻τ⁺ experimentally preferred over K⁺μ⁺τ⁻ (lower backgrounds)

ICHEP 2020

Steffen Weber

 R^+

$B^+ \rightarrow K^+ \mu^- \tau^+$ (using B_{s2}^{*0})

- Expect peak at τ mass also for B not from B_{s2}^{*0} decay, but wider distribution
- Normalization channel: $B^+ \rightarrow J/\psi(\rightarrow \mu\mu)K^+$
- Extract fraction of B⁺ from B_{s2}^{*0} from B⁺K⁻ invariant mass distribution
- Control sample: Same-sign B⁺K⁺ → to optimize signal selection, motivate background shape
- Backgrounds (different partially reconstructed b hadrons) suppressed with BDT
- Remaining backgrounds produce smooth $m_{\rm miss}^2$ distributions

JHEP 06 (2020) 129

ICHEP 2020

B⁺→**K**⁺μ⁻τ⁺ (using B_{s2}^{*0}) JHEP 06 (2020) 129

- Search performed in bins of final BDT output with increasing signal sensitivity
- No signal observed
- Limits also expressed for signal model with modified decay kinematics

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} \text{ at } 90\% \text{ CL}, < 4.5 \times 10^{-5} \text{ at } 95\% \text{ CL}.$$

29.07.2020

ICHEP 2020

Conclusion

- Observation of LFV will be unambiguous sign of BSM physics
- Lowering experimental upper limits crucial to constrain phase space of theoretical models
- LHCb has rich LFV search program, often producing world's best upper limits, or close to
- Especially strong in channels including e's and μ 's (UL ~10⁻⁹)

Outlook

- Acquire ~23 fb⁻¹ in Run3 (50 fb⁻¹ before Upgrade II)
- Software trigger LHCB-PUB-2018-009

- LVF in baryons
 - Complementary information (e.g. different dynamics due to half-integer spin)
 - Baryons are abundantly produced at LHC
 - − E.g. $\Lambda_b^0 \rightarrow \Lambda_0 e^{\pm} \mu^{\mp}$: LHCb analysis ongoing

Thank you for your attention!

BACKUP

The LHCb detector

- Single arm forward spectrometer (2<η<5)
- Specialized on c and b reconstruction
- High precision tracking:
 - silicon strip vertex detector
 - large area silicon strip detector
 - 4 Tm dipole magnet
 - silicon strip + straw drift tubes downstream magnet
- PID
 - RICH, electromagnetic and hadronic calorimeters, muon stations

JINST 3 (2008) S08005 Int. J. Mod. Phys. A30 (2015) 1530022