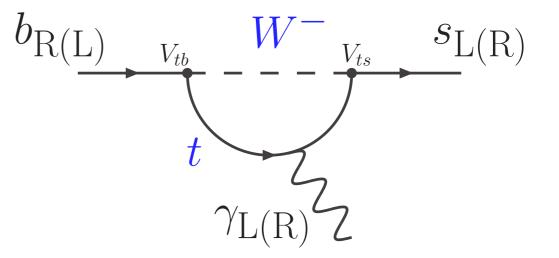


Rare Radiative virtual decays at LHCb

Martino Borsato

Universität Heidelberg

On behalf of the LHCb Collaboration



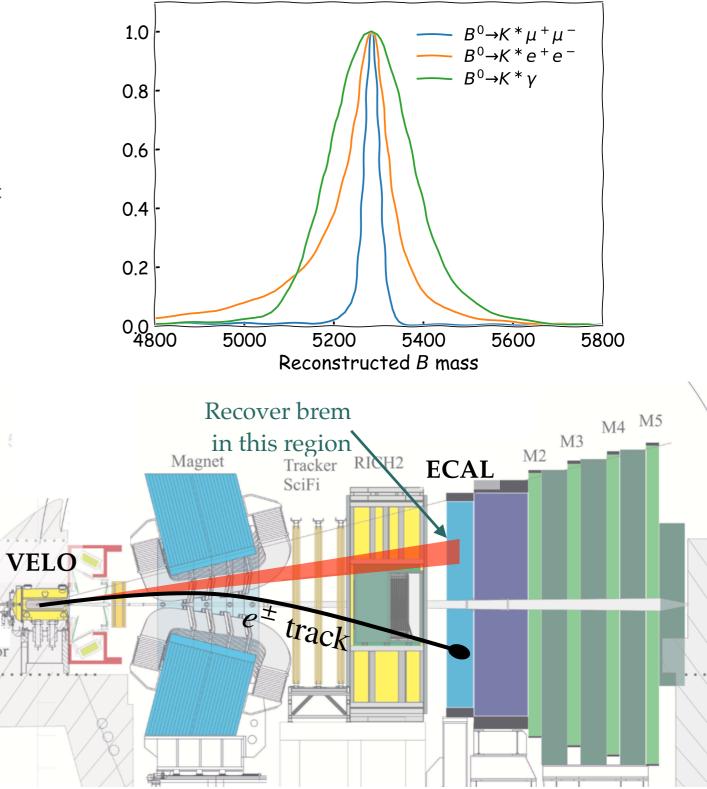
martino.borsato@cern.ch

- $b \rightarrow s\gamma$ is a golden channel of *b* physics
 - FCNC mediated by loop with W^- and t
 - Virtual BSM contribution can be large
 - Not so rare! e.g. $\mathscr{B}(B \to X_s \gamma) \simeq (3.32 \pm 0.15) \times 10^{-4}$

HFLAV April 2019

• Effective Hamiltonian description: $\mathscr{H}_{eff} \simeq -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* (C_7O_7 + C_7'O_7')$ where $O_7^{(\prime)}$ is the left(right)-handed electromagnetic dipole operator

$$\frac{C_7'}{C_7} \simeq \frac{A_R}{A_L} \simeq \frac{m_s}{m_b} \simeq 0.02$$


- The γ is mostly left-handed in SM
 - A measurement of the polarisation can reveal tiny BSM right-handed currents e.g. due to heavy vectorlike quark masses

D. Becirevic et al, JHEP 08(2012)090 Fu-Sheng Yu et al, JHEP 12(2013)102 N. Haba et al, JHEP 03(2015)160 A. Paul et al, JHEP 04(2017)027

$b \rightarrow s\gamma \text{ at LHCb}$

Int.J.Mod.Phys. A 30, 1530022 (2015)

- About $10^{12} b\bar{b}$ in acceptance in 2012-2018 (Run 1 + Run 2)
 - B_d , B_u , B_s , Λ_b , ...
- Best reconstruction with $\mu^{\pm}, \pi^{\pm}, K^{\pm}, p^{\pm}$
 - Price to pay for neutrals γ , π^0 , K_S
 - e^{\pm} emit bremsstrahlung before magnet \rightarrow brem reco procedure ~50% efficient
- Hardware trigger is key
 - $p_{\rm T}(\mu^{\pm}) > 1.5 1.8 \text{ GeV}$
 - $E_{\rm T}(e^{\pm}) > 2.5 3.0 {\rm ~GeV}$
 - $E_{\rm T}(\gamma) > 2.1 3.0 {\rm ~GeV}$
- Upgraded trigger in software
 - More potential and flexibility
 - See dedicated <u>talk by Federico</u>

Martino Borsato - Heidelberg U.

$C_7^{(\prime)}$ at LHCb

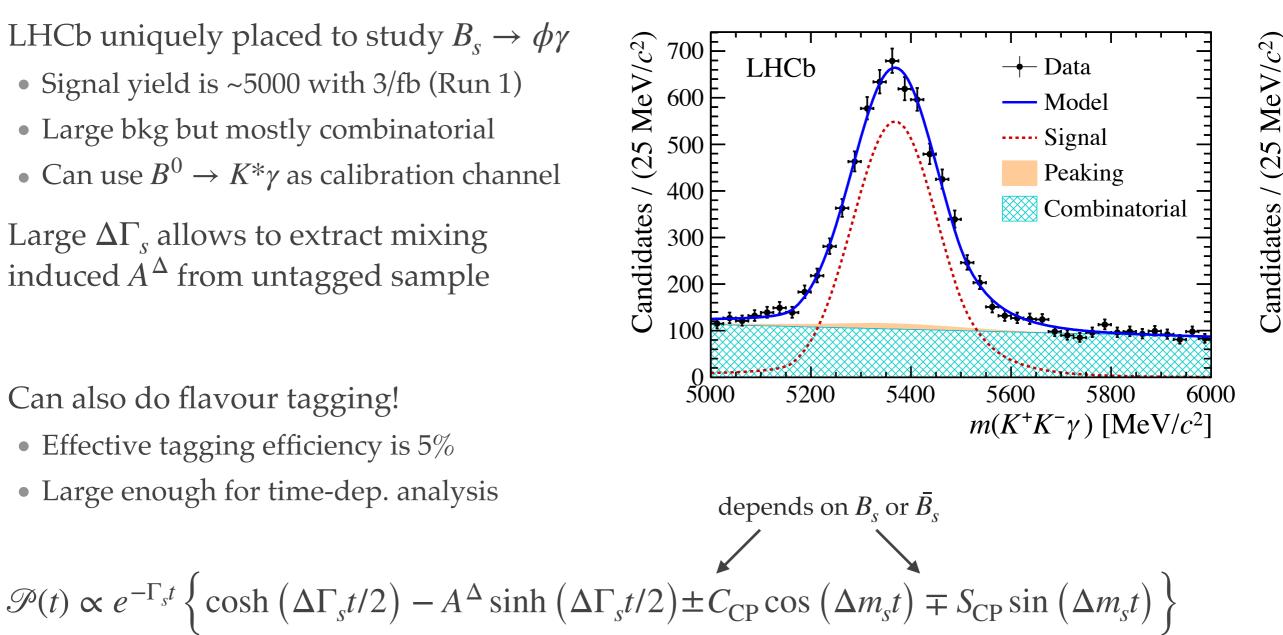
- **Left handed** C_7 measured with BR $\propto (C_7^{\text{SM}} + C_7^{\text{NP}})^2 + (C_7^{'\text{NP}})^2$
 - 5% precise prediction only for inclusive BR (quark-level) <u>M. Misiak et al JHEP 06(2020)175</u>
 - 5% precise inclusive BR measurement from *B*-factories
 - Inclusive BR very hard at LHCb
- Im C_7 measured with direct A_{CP}
 - $B \to K_{\rm S} \pi^0 \gamma$ (et al) at *B*-factories
 - LHCb uses the **tagged** time-dep. analysis of $B_s \rightarrow \phi \gamma$

- **Right handed** C'_7 measured with:
 - Mixing induced CP asymmetry in $B \to K_{\rm S} \pi^0 \gamma$ (et al) at *B*-factories
 - $\Delta \Gamma_s$ induced rate asymmetry in $B_s \rightarrow \phi \gamma$ at LHCb
 - Full amplitude analysis of $B^+ \to K^+ \pi^- \pi^+ \gamma$ at LHCb
 - Angular analysis of $\Lambda_b \rightarrow \Lambda \gamma$ at LHCb
 - Transverse asymmetries in $B^0 \rightarrow K^* e^+ e^-$ at LHCb

$C_7^{(\prime)}$ at LHCb

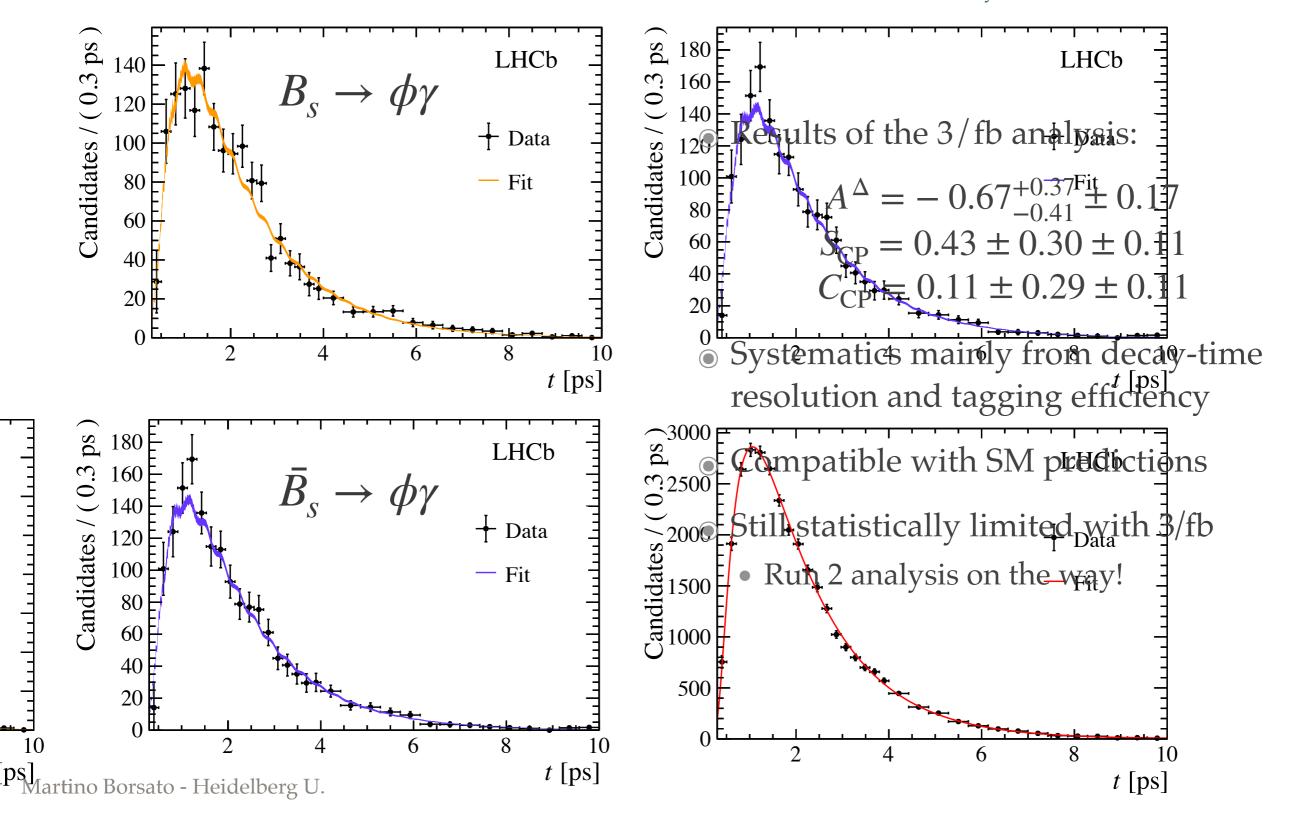
- **Left handed** C_7 measured with BR $\propto (C_7^{\text{SM}} + C_7^{\text{NP}})^2 + (C_7^{'\text{NP}})^2$
 - 5% precise prediction only for inclusive BR (quark-level) <u>M. Misiak et al JHEP 06(2020)175</u>
 - 5% precise inclusive BR measurement from *B*-factories
 - Inclusive BR very hard at LHCb
- Im C_7 measured with direct $A_{\rm CP}$
 - $B \rightarrow K_{\rm S} \pi^0 \gamma$ (et al) at *B*-factories LHCb uses the **tagged** time-dep.

analysis of $B_s \to \phi \gamma$


• **Right handed** C'_7 measured with: • Mixing induced CP asymmetry in $B \to K_{\rm S} \pi^0 \gamma$ (et al) at *B*-factories $\Delta \Gamma_s$ induced rate asymmetry in measured with 3/fb $B_s \rightarrow \phi \gamma$ at LHCb • Full amplitude analysis of 🖕 Future $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ at LHCb first observ. • Angular analysis of <u>Anna's</u> talk $\Lambda_b \rightarrow \Lambda \gamma$ at LHCb Transverse asymmetries in $B^0 \rightarrow K^* e^+ e^-$ at LHCb New today! Measured with 9/fb

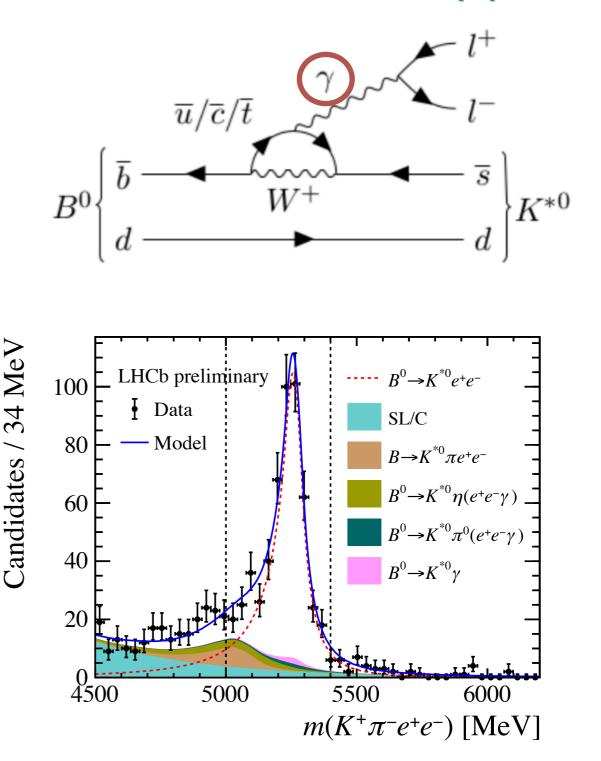
measured with 3/fb

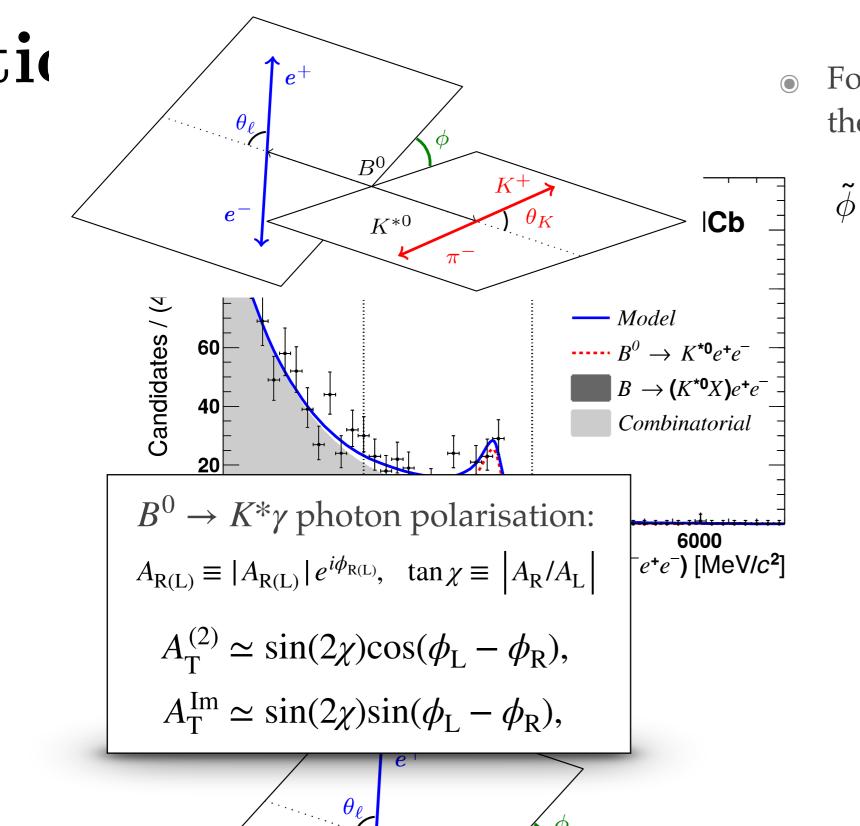
$B_{\rm c} \rightarrow \phi \gamma$ at LHCb


Phys.Rev.Lett. 123 (2019) no.8, 081802

- LHCb uniquely placed to study $B_s \rightarrow \phi \gamma$
 - Signal yield is ~5000 with 3/fb (Run 1)
 - Large bkg but mostly combinatorial
 - Can use $B^0 \to K^* \gamma$ as calibration channel
- Large $\Delta \Gamma_s$ allows to extract mixing induced A^{Δ} from untagged sample
- Can also do flavour tagging!
 - Effective tagging efficiency is 5%
 - Large enough for time-dep. analysis

$B_s \to \phi \gamma$ at LHCb


Phys.Rev.Lett. 123 (2019) no.8, 081802


 $\rightarrow K^*e^+e^-$ at very low q

LHCb-PAPER-2020-020 (in preparation)

- Rare $B^0 \to K^* e^+ e^-$ decay dominated by $b \to s\gamma$ pole at very-low q^2
- Select in $q^2 = m(ee)^2$ region between (28 MeV)² and 0.257 GeV²
 - Pollution from (axial-)vector currents is negligible in this region
- SM BR is as small as $\sim 2 \times 10^{-7}$ but:
 - Fully charged final state ($K^* \rightarrow K^+ \pi^-$)
 - Semileptonic+combinatorial (SL/C) background is phase-space suppressed
- New Run 1+2 (9/fb) analysis with greatly improved selection strategy
 - Allowed even lower q^2 range
 - 530 signal candidates selected with extremely low background

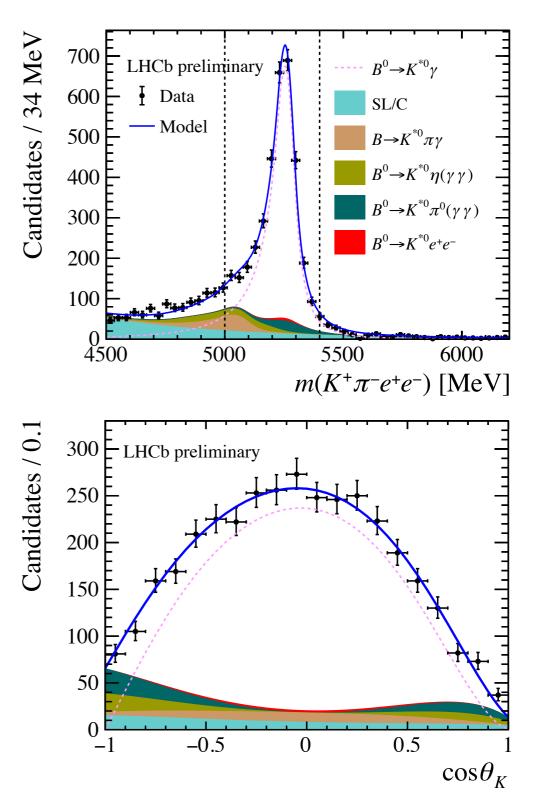
$\begin{array}{c} \text{Oadmap} \\ B^{O} \rightarrow K^{*}e^{+}e^{-} \text{: Angular analysis} \end{array}$

LHCb-PAPER-2020-020 (in preparation)

• Folding ϕ angle to simplify the 3D angular expression:

$$\tilde{\phi} \equiv \begin{cases} \phi \text{ if } \phi \ge \mathbf{0} \\ \phi + \pi \text{ if } \phi < \mathbf{0} \end{cases}$$

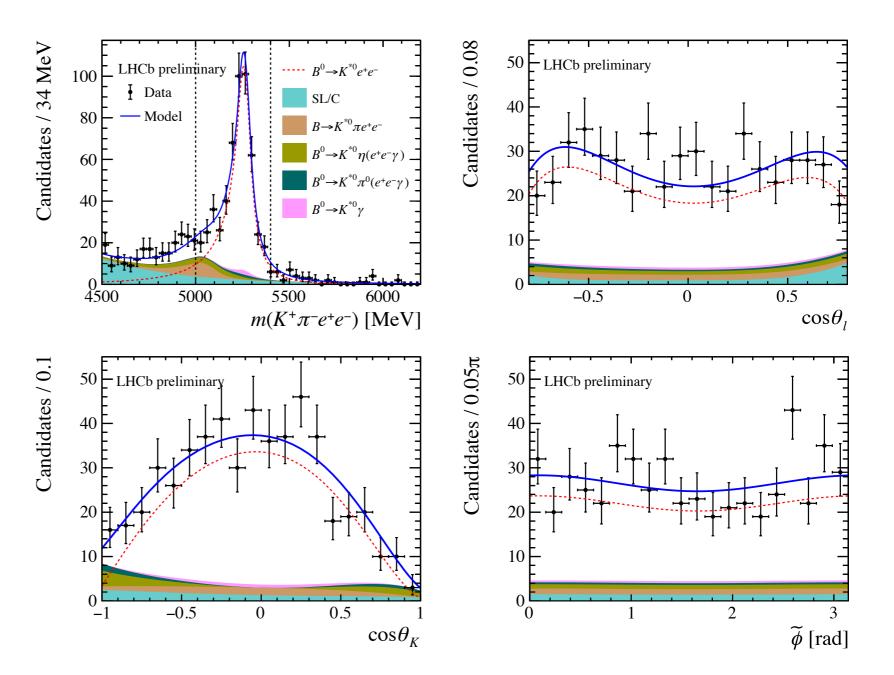
 $\theta_K \cos 2\theta_\ell$


$B^0 \rightarrow K^* e^+ e^-$: Control channel

LHCb-PAPER-2020-020 (in preparation)

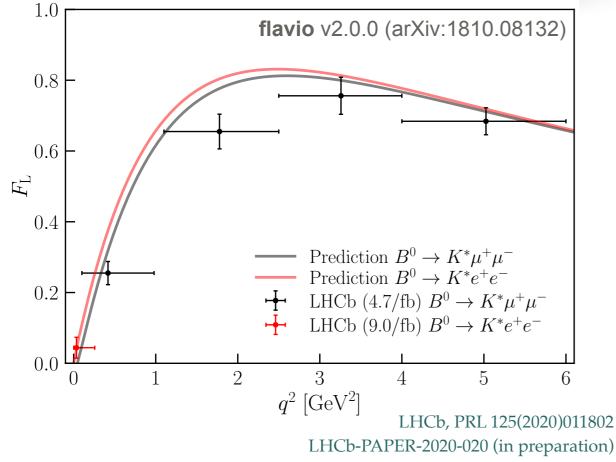
- $B^0 \to K^* \gamma$ has much larger BR
 - Same final state as $B^0 \to K^* e^+ e^-$ when γ converts to $e^+ e^-$ in the material
 - Can be well separated with material veto and cut on $m(e^+e^-) > 10$ MeV

• Use
$$B^0 \to K^* \gamma$$
 as control for $B^0 \to K^* e^+ e^-$


- Very similar signal shape and background composition to signal
- Fit $m(K^+\pi^-e^+e^-)$ distribution to validate signal fit (found 2950 $B^0 \rightarrow K^*\gamma$ candidates)
- Fitted F_L to cos θ_K found to be compatible with 0 with sub-percent precision
 → due to real γ, longitudinal polarisation fraction F_L is expected to be zero

$B^0 \rightarrow K^* e^+ e^-$: Angular fit

LHCb-PAPER-2020-020 (in preparation)


- Fit to *B* mass and angles
 - In reduced mass region
 - Semilept+combinatorial (SL/C) modelled using B → K*µ[±]e[∓] data candidates
 - Other backgrounds from simulation
 - Fit procedure thoroughly tested with pseudo-experiments

$B^0 \rightarrow K^* e^+ e^-$: Results

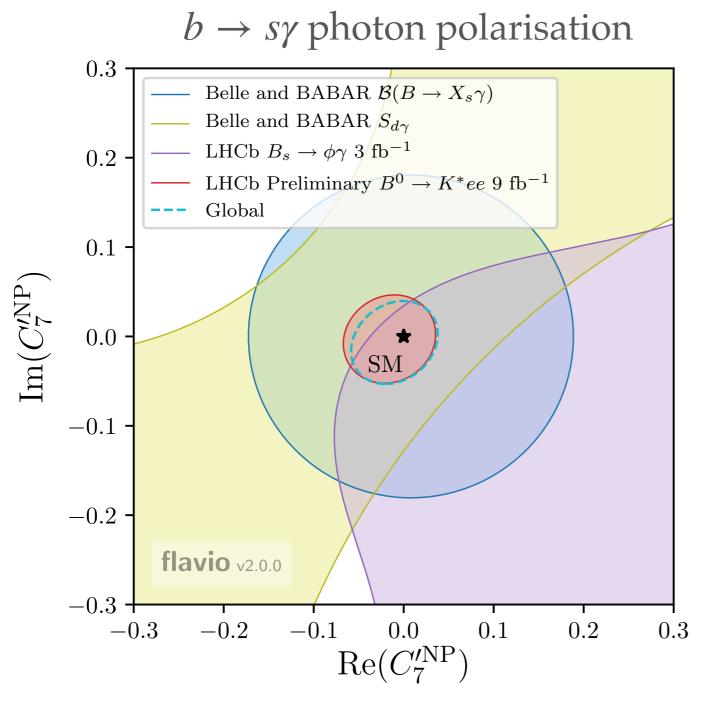
 $(28 \text{ MeV})^2 < q^2 < 0.257 \text{ GeV}^2$

 $F_{\rm L} = 0.044 \pm 0.026 \pm 0.014$ $A_{\rm T}^{\rm Re} = -0.064 \pm 0.077 \pm 0.015$ $A_{\rm T}^{(2)} = +0.106 \pm 0.103^{+0.016}_{-0.017}$ $A_{\rm T}^{\rm Im} = +0.015 \pm 0.102 \pm 0.012$

LHCb-PAPER-2020-020 (in preparation)

- Main systematics from signal acceptance and angular background modelling
- Statistical error still dominates

• Measurements of $F_{\rm L}$ and $A_{\rm T}^{\rm Re} = \frac{3}{4}A_{\rm FB}(1 - F_{\rm L})$ are also interesting in the context of $B^0 \rightarrow K^*\mu^+\mu^-$ angular analysis anomalies (see <u>David's talk</u>) LHCb, PRL 125(2020)011802


 The analysis prepares the ground for lepton universality tests in the angles

• $A_{\rm T}^{(2)}$ and $A_{\rm T}^{\rm Im}$ are sensitive to C_7' next slide

PRELIMINARY

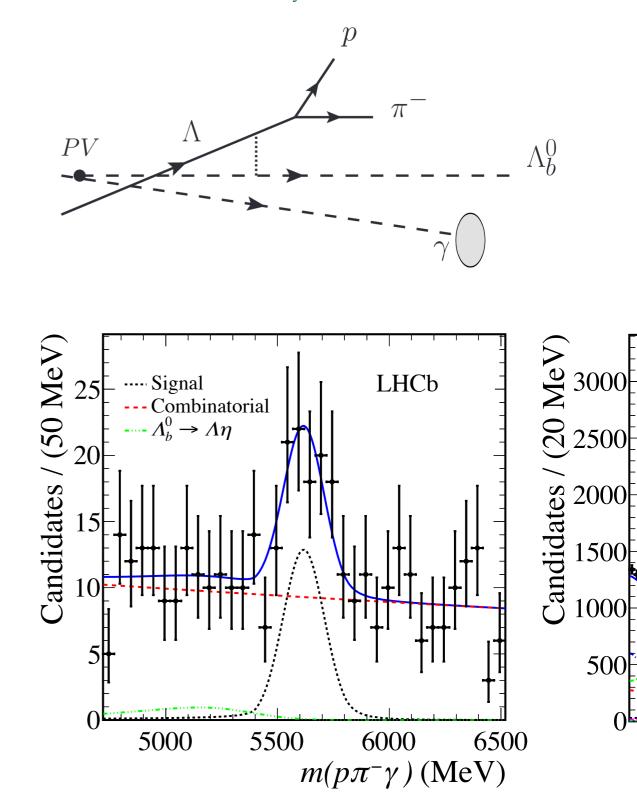
$B^0 \rightarrow K^* e^+ e^-$: Results

A. Paul and D. M. Straub, <u>JHEP 04 (2017) 027</u> D. M. Straub, "flavio", <u>arXiv:1810.08132</u>

- Constraint from $B^0 \to K^* e^+ e^$ dominating the sensitivity to C'_7
 - Constraining both Re and Im part
 - Better than combination of all previous results
- Statistically limited measurements
 - The constraint will keep improving with more luminosity (upgrade)

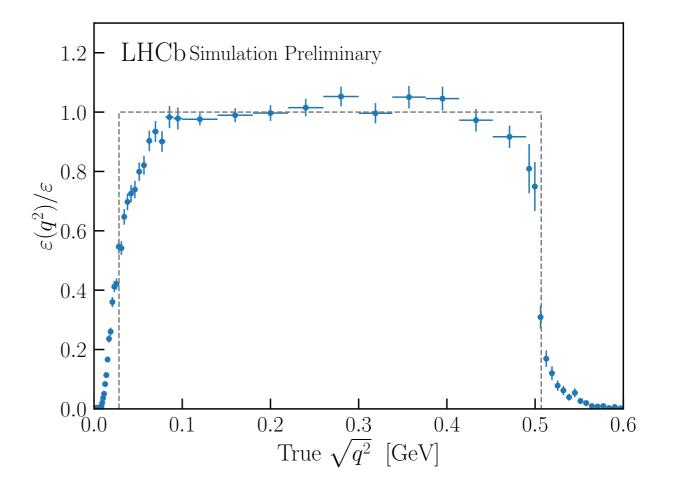
Conclusions

- LHCb program of $b \rightarrow s\gamma$ studies is flourishing
 - Achieved world-best measurement of photon polarisation
- Methods very different from B-factories:
 - Time-dependent analysis of $B_s \rightarrow \phi \gamma$
 - Angular analysis of $B^0 \to K^* e^+ e^-$ at very-low q^2
- Expect more precise results from Run 2 data (on tape) and the upcoming LHCb upgrade


BACKUP

$\Lambda_b \xrightarrow{\Lambda_b} \frac{d}{u} \xrightarrow{d} \Lambda_{(1115)}$

LHCb, Phys. Rev. Lett. 123 (2019) 031801


- LHCb has unique capability to study radiative baryon decays
- First attempt with $\Lambda_b \to \Lambda \gamma$
 - Using only 2016 data (1.7/fb)
 - No γ direction and $c\tau(\Lambda) \simeq 8$ cm \rightarrow no Λ_b vertex reconstructed
 - Signal classification with BDT is crucial
- Found 65 ± 13 $\Lambda_b \rightarrow \Lambda \gamma$ decays
 - First observation at 5.6σ significance
 - BR = $(7.1 \pm 1.5 \pm 0.6 \pm 0.7) \times 10^{-6}$ \rightarrow in agreement in with SM predictions
- Possibile to measure photon polarisation
 - To be competitive with *B* measurements, precision needs to improve by factor ~ 6

Eur.Phys.J.C 79 (2019) 7, 634

$B^0 \rightarrow K^* e^+ e^-$: effective q

- Analysis performed in bins of reconstructed m(e⁺e⁻) between 10 and 500 MeV
- The m(e⁺e⁻) resolution is not negligible and asymmetric
 - Provide efficiency map as a function of true m(e⁺e⁻)
 - For most use cases one can use the effective q² range from (28 MeV)² to 0.257 GeV²

LHCb-PAPER-2020-020 (in preparation)

$B^0 \rightarrow K^* e^+ e^-$: systematics

LHCb-PAPER-2020-020 (in preparation)

Source of systematic	$\sigma(A_{\rm T}^{(2)})$	$\sigma(A_{\mathrm{T}}^{\mathrm{Im}})$	$\sigma(A_{\rm T}^{\rm Re})$	$\sigma(F_{\rm L})$
Acceptance sample size	0.007	0.007	0.007	0.003
Acceptance model	0.004	0.001	0.008	0.001
SL/C sample size	0.007	0.007	0.007	0.003
SL/C model	0.012	0.005	0.006	0.005
PR model	0.001	0.003	0.002	0.001
η/π^0 model	0.0004	0.0001	0.002	0.01
ϕ resolution	-0.004	-0.001	-	_
MC corrections	0.003	0.001	0.003	0.007
Signal mass shape	0.002	0.002	0.004	0.001
Fit bias	-	-	-	-0.003
Total systematic uncertainty	$+0.016 \\ -0.017$	0.012	0.015	0.014
Statistical uncertainty	0.103	0.102	0.077	0.026

$B^0 \rightarrow K^* e^+ e^-$: All results

LHCb-PAPER-2020-020 (in preparation)

$$(28 \text{ MeV})^2 < q^2 < 0.257 \text{ GeV}^2$$

 $F_{\rm L} = 0.044 \pm 0.026 \pm 0.014$ $A_{\rm T}^{\rm Re} = -0.064 \pm 0.077 \pm 0.015$ $A_{\rm T}^{(2)} = +0.106 \pm 0.103^{+0.016}_{-0.017}$ $A_{\rm T}^{\rm Im} = +0.015 \pm 0.102 \pm 0.012,$

- Statistically dominated
- Small correlations
- Can determine $B^0 \to K^* \gamma$ photon polarisation

 $\operatorname{Re}(A_{\mathrm{R}}/A_{\mathrm{L}}) = 0.05 \pm 0.05$ $\operatorname{Re}(A_{\mathrm{R}}/A_{\mathrm{L}}) = 0.01 \pm 0.05$

Martino Borsato - Heidelberg U.