B_s^0 oscillations as a probe of decays with invisible particles

Adam Morris^{1,2}, Anton Poluektov¹

 1 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France 2 Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany

30 July 2020

ICHEP 2020

Based on publication [arXiv:1911.12729, JHEP 02 (2020) 163]

B decays with invisible particles

- Many important analyses of B decays involve final states with invisible or poorly reconstructed particles.
 - Final states with neutrinos
 - Hadronic decays with neutrons, $K_{\rm L}^0$.
 - NP candidates: heavy neutrinos, ALPs, other dark matter candidates.

e^+e^- B-factories

- ${f B} \, {f B} \, {$
- Fully reconstruct the other (tag) B meson ⇒ constrain 4-momentum of the probe B

Hadron machines (LHCb, ...)

- No kinematic constraints
- Use topology of the B decay to constrain direction of flight, but no constraint on $|p_B|$.
- Not sufficient if e.g. mass of heavy invisible particle is unknown, or > 1 neutrino, ...
- In general, large background from B hadron decays.

B decays with invisible particles

lacktriangle Propose a technique where background rejection and kinematic constraints are obtained from the B^0_s oscillation pattern.

```
[arXiv:1911.12729, JHEP 02 (2020) 163]
```

- Tested with simulation for a simple case: $B_s^0 \to AX$, where A is reconstructed, and X is invisible (possibly with unknown mass).
 - NP example: [G. Elor, M. Escudero, A. Nelson, "Baryogenesis and Dark Matter from B mesons"]: model where both baryon asymmetry and DM are explained by B meson oscillations with subsequent decays to DM particles.
 - Possible SM benchmark analysis: $B_s^0 o D_s^- p \bar{n}$ (expect sufficiently large Br)
- Could be applied to other final states with unreconstructed particles, e.g. semileptonic.

B_s^0 oscillations

Oscillations in $B^0_s \to D^-_s \pi^+$ [LHCb-PAPER-2013-006]

$$f(t) \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) \pm \cos(\Delta m_s t) \right],$$

Calculation of decay time needs vertex displacement \boldsymbol{x} and \boldsymbol{B} momentum $p_{\boldsymbol{B}}$:

$$t = x \frac{M_B}{p_B}$$

A very specific pattern that can be used to

- lacktriangle remove non- B_s^0 backgrounds
- lacksquare constrain p_B

Reconstruction of B_s^0 momentum

Consider the decay $B^0_s o AX$, where

- A is reconstructed and X is invisible.
- lacksquare B_s^0 decay vertex is measured (e.g. A is decaying strongly)
- $\blacksquare B_s^0$ flavour is tagged

Two solutions for p_B :

$$p_B = \frac{\left(M_B^2 + \Delta\right) p_A \cos\theta \pm E_A \sqrt{\Delta^2 + M_B^2 (M_B^2 + \Delta - 4M_A^2 - 4p_A^2 \sin^2\theta)}}{2(M_A^2 + p_A^2 \sin^2\theta)}$$

where
$$\Delta \equiv M_A^2 - M_X^2$$
,

$$E_A \equiv \sqrt{M_A^2 + p_A^2}.$$

 θ : angle between B_s^0 and A

Example: $M_A = 2 \,\text{GeV}$

Toy MC with perfect tagging and vertex resolution

$$B_s^0 \to AX$$
, $M_A = 2 \, \text{GeV}$, $M_X = 1 \, \text{GeV}$.

Decay time distribution as a function of probe mass m_X .

Correct frequency $\omega = \Delta m_s$ for $m_X = M_X$

 $p_B^{(\mathrm{min})}$ provides better oscillating pattern (more often the right solution)

Flavour asymmetry

Instead of absolute rates of the B^0_s and \overline{B}^0_s mesons, it is convenient to deal with flavour asymmetry

$$a_{B_s^0}(t) = \frac{N_{\mathrm{unmix}}(t) - N_{\mathrm{mix}}(t)}{N_{\mathrm{unmix}}(t) + N_{\mathrm{mix}}(t)},$$

Use only $p_B^{(\min)}$ solution.

Flavour asymmetry oscillations as a function of m_X

"Resonance" at the true mass M_X

B_s^0 oscillation harmonic in flavour asymmetry

To avoid having to deal with low-frequency components, consider only the harmonic of B_s^0 oscillation frequency in the flavour asymmetry:

$$A_{B_s^0} \equiv C_{B_s^0} + iS_{B_s^0} = \int a_{B_s^0}(t)e^{i\Delta m_s t} dt,$$

Use only $t>0.8\,\mathrm{ps}$ to calculate the integral (B_s^0 selection)

 $C_{B_2^0}$ reaches maximum at $m_X=M_X$, and $S_{B_2^0}$ crosses zero.

Technical details

Statistical uncertainties in the Fourier spectrum are correlated (same events are used for different m_X). Deal with it using bootstrapping.

- **Vertex resolution** affects the performance of the method (uncertainty in measurement of $\theta \Rightarrow$ decoherence at highter decay times).
- Flavour tagging affects stat. uncertainty. Typical value for LHCb: 6% in for hadronic final states. [JHEP 03 (2018) 059]

Finite transverse resolution of B_s^0 vertex σ_x affects p_B reconstruction (via θ). Typical vertex resolution is a few tens of μm (depends on kinematics and multiplicity)

Apply vertex smearing in MC.

Ideal vertex resolution, 10^5 events of each ${\cal B}^0_s$ flavour

Finite transverse resolution of B_s^0 vertex σ_x affects p_B reconstruction (via θ). Typical vertex resolution is a few tens of μm (depends on kinematics and multiplicity)

Apply vertex smearing in MC.

Vertex resolution $\sigma_x=20\,\mu\mathrm{m}$, 10^5 events of each B_s^0 flavour

Finite transverse resolution of B_s^0 vertex σ_x affects p_B reconstruction (via θ). Typical vertex resolution is a few tens of μm (depends on kinematics and multiplicity)

Apply vertex smearing in MC.

Vertex resolution $\sigma_x = 40 \, \mu \text{m}$, 10^5 events of each B_s^0 flavour

Finite transverse resolution of B_s^0 vertex σ_x affects p_B reconstruction (via θ). Typical vertex resolution is a few tens of μm (depends on kinematics and multiplicity)

Apply vertex smearing in MC.

Vertex resolution $\sigma_x = 40 \, \mu \text{m}$, 10^4 events of each B_s^0 flavour

Mass resolution and signal significance

Realistic scenario for LHCb: vertex resolution $\sigma_x=40~\mu\mathrm{m},~\sigma_z=300~\mu\mathrm{m},~10^4$ events of each B_s^0 flavour

1000 toys, M_X measured as zero-crossing point of $S_{B_s^0}$.

Better resolution for higher-mass X

Some bias towards larger mass due to not exactly sinusoidal flavour asymmetry (decoherence at larger t), can be corrected with MC.

Mass resolution and signal significance

Realistic scenario for LHCb: vertex resolution $\sigma_x=40~\mu\mathrm{m},~\sigma_z=300~\mu\mathrm{m},~10^4$ events of each B_s^0 flavour

Mass resolution as a function of sample size, and signal significance test statistic taking into account correlation between different m_X .

Conclusion

- $lackbox{\blacksquare} B_s^0$ oscillations can help with partially reconstructed decays at hadronic machines
 - Remove any non- B_s^0 backgrounds
 - lacksquare Provide additional kinematic constraint: p_B from the oscillation frequency
- Feasibility depends on flavour tagging performance and vertex resolution
 - lacksquare Resolution is critical for topological reconstruction of B_s^0 momentum.
 - Can be tested with some high-stats modes already with current data sample
- Toy MC done for a case with $B^0_s \to AX$ where X is massive and not reconstructed. B^0_s oscillations provide sensitivity to X mass spectrum (which would be impossible with other techniques).
 - \blacksquare Possible applications: searches for NP in decays with invisible particles (e.g. ALPs, heavy neutrinos, other DM candidates), decays with neutrons, K_L^0 etc.
 - Similar technique can be used for SL decays with neutrinos to better constrain kinematic parameters. E.g. instead of constraining X mass, could better constrain q^2 or angular parameters.

Non- B_s^0 background rejection

 $B_s^0 \to AX \ m_X$ spectra for $M_X = 1 \, {\rm GeV}$ (top) and $2 \, {\rm GeV}$ (bottom) 1000 pseudoexperiments

Non- B_s^0 background rejection

 $B^0 \to AX$ (top) and random flavour tag (bottom) m_X spectra 1000 pseudoexperiments