

Study of time-dependent and direct CP violation at Belle

K. Sumisawa(KEK) 40th International Conference on High Energy Physics 30 July, 2020

• time-dependent CP violation in $B^0 \rightarrow K_S^0 K_S^0 K_S^0$

Preliminary

• direct CP violation in $B \rightarrow \overline{D^0} \pi$ Preliminary

CP violation

CP violation(CPV): the difference of partial decay width between B and anti-B.

$$\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$$

interference between 2 amplitude with different complex phase make CPV

$$A_{CP} = \frac{\Gamma_{\bar{B}} - \Gamma_{\bar{B}}}{\Gamma_{\bar{B}} + \Gamma_{\bar{B}}}$$

 $K^+\pi^0$

- direct CP violation: 2 decay diagram
 - mixing induced CP violation: time-dependent CPV

good probes of new physics (ex. $b \rightarrow sq\overline{q}$ TCPV, $\Delta A_{\kappa_{\pi}}$ puzzle)

parameter for signal extraction

• Kinematic variables:

$$M_{bc} = \sqrt{E_{Beam}^2 - p_B^2}, \qquad \Delta E = E_B - E_{Beam}$$

- $e^+e^- \rightarrow q\overline{q} \ (q \in u, d, s, c)$ dominant background. ~3 times $e^+e^- \rightarrow \Upsilon(4S)$ cross-section.
- Discriminate using event topology. <sup>e⁺e⁻→ Y(4S)→BB</sub> <sup>e⁺e⁻→ qq</sub> Spherical Spherical Spherical neural network. modified NN, C_{NN}

 </sup></sup>

Introduction – motivation for $B^0 \rightarrow K_S^0 K_S^0 K_S^0$

- Pure $b \rightarrow s$ penguin transition by loop diagram
- CP-even eigenstate
- TCPV measurement in the SM
 - Direct CPV(A) = 0
 - mixing induced CPV (S) ~ $-\sin 2\phi_1$
- The deviations from SM expectations for *S* and *A* may indicate of new physics.

• We aim to accurately measure TCPV value in $B^0 \rightarrow K_S^0 K_S^0 K_S^0$ with final data sample (772M $B\overline{B}$).

- An unbinned maximum likelihood (ML) fit with 3D PDF (ΔE , M_{bc} , Modified NN).
- Signal is obtained to be 329 ± 20 and the purity in the signal region is 72%. - Signal region is defined as $\pm 3\sigma$ based on the fit value for ΔE , M_{hc} .

Measurement of CPV parameters

• PDF to extract CPV parameters

$$\mathcal{P}_{j}(\Delta t_{j}, q_{j}) = (1 - f_{\rm ol}) \times [f_{j}^{\rm sig} \mathcal{P}_{\rm sig}(\Delta t_{j}, q_{j}) + (1 - f_{j}^{\rm sig}) \mathcal{P}_{\rm bkg}(\Delta t_{j})] + f_{\rm ol} \mathcal{P}_{\rm ol}(\Delta t_{j})$$

- P_{sig} : signal PDF
- *P*_{*bkg*}: continuum background PDF
- Pol: outlier components PDF
- Fitting results

• $S = -0.72 \pm 0.23$ (stat) ± 0.05 (syst)

• $A = 0.11 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$

Significance of *CP* violation

- The significance is calculated using the Feldman-Cousins approach.
- The significance of *CP* violation: our result is 2.4σ away from (S,A)=(0,0)

Result

$B^0 \to \overline{D^0} \pi^0$ and $B^+ \to \overline{D^0} \pi^+$

• $b \rightarrow c \overline{u} d$ decay.

$$B^0 \to \overline{D^0} \pi^0$$

Colour suppressed Previous results: Belle: $\mathfrak{B} = (2.25 \pm 0.14 \pm 0.35) \times 10^{-4}$ PRD 74, 092002 (2006) Babar: $\mathfrak{B} = (2.69 \pm 0.09 \pm 0.13) \times 10^{-4}$ PRD 84(3), 112007 (2011) A_{CP} is unmeasured. Preliminary

Colour favour, \mathfrak{B} is $\mathcal{O}(10)$ higher. Previous results:

Belle: $\mathfrak{B} = (4.34 \pm 0.10 \pm 0.23) \times 10^{-3}$ PRD 97(1), 012005 (2018) Babar: $\mathfrak{B} = (4.90 \pm 0.07 \pm 0.22) \times 10^{-3}$ PRD 75, 031101 (2007) Belle: $A_{CP} = (-0.8 \pm 0.8)\%$ PRD 73, 051106 (2006)

LHCb:
$$A_{CP} = (-0.6 \pm 0.5 \pm 1.0)\%$$

PLB 723, 4453 (2013)

$B \rightarrow \overline{D^0} \pi$ Motivations

Preliminary

- Both commonly used control mode in other analysis(ex. $B^0 \rightarrow \pi^0 \pi^0$, $B \rightarrow K \pi^0$), allow for high-precision validations of techniques.
 - Important for Belle II precision frontier.

- secondary diagram: significantly lower amplitude than main diagram \Rightarrow expect no A_{CP} .
- $B^0 \rightarrow \overline{D^0} \pi^0$ notably large non-factorisable components.
 - $\mathfrak{B} \gg$ 'naïve' factorisation predictions.
 - Constraints for models of final state interactions

 $A_{CP} = (0.19 \pm 0.36 \pm 0.57)\%$

~1.7x improvement in precision

Summary

• time-dependent *CP* violation in $B^0 \rightarrow K_S^0 K_S^0 K_S^0$

- $S = -0.72 \pm 0.23$ (stat) ± 0.05 (syst)
- $A = 0.11 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$
- The significance of CP violation is found to be 2.4σ
- The results are consistent with:
 - SM expectation: $S(\sin 2\phi_1) = -0.688$
 - Previous Belle result within 1σ

$B^0 \rightarrow \overline{D^0} \pi^0$: Preliminary

 $\mathfrak{B} = (2.69 \pm 0.06 \pm 0.09) \times 10^{-4}$ $A_{CP} = (0.10 \pm 2.05 \pm 1.22)\%$

$B^+ \rightarrow \overline{D^0} \pi^+$: Preliminary

 $\mathfrak{B} = (4.53 \pm 0.02 \pm 0.14) \times 10^{-3}$ $A_{CP} = (0.19 \pm 0.36 \pm 0.57)\%$ First measurement of A_{CP} Highest precision \mathfrak{B} .

Belle

-0.2

(2020)

0

0.2

0.4

0.6

0.8

Most precise measurement by almost 2x.

Preliminary

 0.72 ± 0.23

1.2

backup

CP Violation in B⁰ decays

KM ansatz: CPV is due to a complex phase in the quark mixing matrix

15

Principle of Measurement in B-factories

- Reconstruct $B \rightarrow f_{CP}$ decays
- Measure proper-time difference: Δt
- Determine flavor of B_{taa}
- Evaluate CP asymmetry from Δt and flavor of B_{tag}

Vertex reconstruction & flavor tagging

- Flavor tagging for B_{tag} is performed by using inclusive properties of particles not associated with the signal B^0 .
 - B_{signal} decay to CP eigen state

The flavor and Δt are needed for *TCPV* extraction

Continuum background

Dalitz plot

• Compare the dalitz plot for MC and data, our evtgen model for MC generation, PHSP_CP, well describes data.

B-mesons background

 $K^0_{S_{A,B,C}}$: momentum order

• Using invariant mass $M_{K_{S}^{0}K_{S}^{0}}$, quasi-two-body decay are considered:

- $b \rightarrow c$ quark transition by the tree diagram \rightarrow considered as a background
 - Veto: $B^0 \to \chi_{c0} (K_S^0 K_S^0) K_S^0 \to 3.388 \ GeV/c^2 < M_{K_S^0 K_S^0} < 3.444 \ GeV/c^2$
- $b \rightarrow s$ quark transition by the penguin diagram \rightarrow considered as a signal

CP fitting – lifetime measurement

- Using 1M signal MC with input τ_B is 1.5367
 - Fitting result: 1.5461 ± 0.0072 ps
 - Difference (fitting result input) : 0.0106 ps
- Data result
 - Fitting result: 1.4271 ± 0.1129 ps
 - PDG value (1.520 ± 0.004 ps)

The result of lifetime fitting is consistent with PDG value

Compare with the previous Belle result

- Previous Belle result
 - Using $532 \times 10^6 B\bar{B}$ (492 fb⁻¹)
 - Include $B \to K_S^0 K_S^0 K_S^0 \to \pi^+ \pi^- \pi^+ \pi^- \pi^0 \pi^0$
 - Measured result
 - $S = -0.30 \pm 0.32 \pm 0.08$
 - A = $0.31 \pm 0.20 \pm 0.07$
- In this analysis
 - exp 7~47 data set: 504 fb⁻¹
 - Reprocessed data (improved tracking) + improved K_S^0 efficiency (77% \rightarrow 87%)
 - Measured result
 - $S = -0.73 \pm 0.31$
 - $A = 0.16 \pm 0.20$

Continuum Suppression Variables

23

Fitter

- Unbinned maximum likelihood fit in M_{BC} , ΔE and C_{NN} using RooFit for Yield and A_{CP} of each event type (signal, qq, BB bkg, Rare).
- 4 datasets divided by D^0 decay and Kaon charge.
- Constrained by $\overline{D^0} \to K^+ \pi^- \pi^0$: $\overline{D^0} \to K^+ \pi^-$ Yield ratio and A_{CP} .
 - $N_{K^+,2bd} = N \times (1 A_{CP}) \times 0.5 \times (1 R_{D^0 mode})$
 - $N_{K^-,2bd} = N \times (1 + A_{CP}) \times 0.5 \times (1 R_{D^0 mode})$
 - $N_{K^+,3bd} = N \times (1 A_{CP}) \times 0.5 \times (R_{D^0mode})$
 - $N_{K^-,3bd} = N \times (1 + A_{CP}) \times 0.5 \times (R_{D^0mode})$
- Background A_{CP} and signal R_{D^0mode} are fixed.
- PDF shapes from Monte Carlo.

Systematic Uncertainties (39)

	$B^0 ightarrow \overline{D^0} \pi^0$	$B^+ ightarrow \overline{D^0} \pi^+$
No. <i>BB</i>	1.37%	1.37%
$\mathfrak{B}(\Upsilon(4S))$	1.23%	1.17%
DCS mode correction	0.01%	0.02%
Fit bias	0.60%	0.20%
Mean efficiency	2.44%	2.54%
$\overline{D^0} \to K^+ \pi^- \pi^0 : \overline{D^0} \to K^+ \pi^-$ ratio	+0.31% -0.38%	$+0.19\% \\ -0.08\%$
A_{CP} detector bias (backgrounds)	0.01%	0.05%
Calibration Factors ($C_{NN}^{'}$)	0.34%	0.06%
Modified KEST signal (M_{BC} , ΔE)	0.63%	0.24%
KEST PDFs	0.58%	0.05%
Fixed Charmless $B\overline{B}$ Yields	+0.26% -0.27%	< 0.01%
Total	±3.28 %	<u>+</u> 3.13%

Systematic Uncertainties (A_{CP})

	$B^0 ightarrow \overline{D^0} \pi^0$	$B^+ ightarrow \overline{D^0} \pi^+$
	(× 10 ⁻²)	(× 10 ⁻²)
Fit bias	0.03	0.02
$\overline{D^0}$ decay A_{CP}	0.35	0.35
A_{CP} detector bias (signal)*	0.66	0.42
A_{CP} detector bias (backgrounds)*	$+0.49 \\ -0.49$	+0.03 -0.03
$\overline{D^0} \to K^+ \pi^- \pi^0$: $\overline{D^0} \to K^+ \pi^-$ ratio	+0.03 -0.02	< 0.01
Calibration Factors ($C_{NN}^{'}$)	0.06	< 0.01
Modified KEST signal (M_{BC} , ΔE)	0.06	< 0.01
KEST PDFs	0.15	< 0.01
Fixed Charmless $B\overline{B}$ Yields	< 0.01	< 0.01
Total	<u>+1.22</u>	<u>+</u> 0.57

 $\Delta A_{K\pi}$ Puzzle in 2010

Belle Results: Nature 452, 332 (2008)

$$A_{cp}(K^{+}\pi^{-}) = \begin{cases} -0.107 \pm 0.016 \stackrel{+}{}_{-0.004}^{+} \stackrel{0.006}{}_{-0.004}^{-} \stackrel{BaBar}{}_{-0.094 \pm 0.018 \pm 0.008}^{-} \stackrel{Belle}{}_{-0.098 \pm 0.023 \pm 0.009}^{-} \text{CDF}} \\ -0.04 \pm 0.16 \pm 0.02 \quad \text{CLEO} \end{cases}$$
$$\Rightarrow -0.098 \stackrel{+}{}_{-0.011}^{-} @ 8.1\sigma \quad \text{AVG} \\ -0.011 \quad \text{@ 8.1}\sigma \quad \text{AVG} \\ A_{cp}(K^{+}\pi^{0}) = \begin{cases} +0.030 \pm 0.039 \pm 0.010 & \text{BaBar} \\ +0.07 \pm 0.03 \pm 0.01 & \text{Belle} \\ -0.29 \pm 0.23 \pm 0.02 & \text{CLEO} \end{cases}$$
$$\Rightarrow +0.050 \pm 0.025 \quad @ 2.0\sigma \quad \text{AVG} \end{cases}$$

 $\Delta A_{K\pi} - A_{cp}(K \pi) - A_{cp}(K \pi) = -0.147 \pm 0.028 \text{ (b)} 5.3\sigma$

Solutions to the $\Delta A_{K\pi}$ Puzzle

 Enhancement of large C with large strong phase to T
 ⇒ strong interaction !?

> Chiang et. al. 2004 Li, Mishima & Sanda 2005

• Enhancement of large P_{EW} \Rightarrow New physics

Yoshikawa 2003; Mishima & Yoshikawa 2004; Buras et. al. 2004, 2006; Baek & London 2007; Hou et. al. 2007; Feldmann, Jung & Mannel 2008