Early charmless B decay physics in Belle II

EXER

July 30, 2020 - ICHEP 2020, Prague

University of Trieste and INFN

On behalf of Belle II collaboration

Eldar Ganiev

Hadronic charmless B decays

Observed 27 years ago by CLEO and grew to account for 15% of experimental flavor-physics papers.

- Highly sensitive to new loop contributions.
- Probe non-SM dynamics in each of the three CKM angles.
- As a byproduct, multiple tests of approaches to deal with QCD factorization, SU(3) symmetries etc.

Challenges:

- ⇒ charmless *B* decays have branching fractions of order \leq 10⁻⁵;
- \Rightarrow final states same as prevailing backgrounds.

Charmless at Belle II

Key role:

Belle II in 2019-2020:

- ✓ collected ~75 fb⁻¹ of data;
- World record luminosity by SuperKEKB: 2.4×10³⁴cm⁻²s⁻¹ (with currents lower than at KEKB);
- many physics analyses ongoing.

Today: first measurements of branching fraction, CP asymmetry, and polarization for a variety of charmless *B* decays using 35 fb⁻¹ (38M $B\bar{B}$ pairs).

Analysis ingredients

Goal: measure \mathcal{B} , A_{CP}, and f_L of two- and three-body charmless *B* decays.

Selection

Challenge: reject the dominant background from light $q\bar{q}$ pairs (continuum).

Exploit variables sensitive to topological differences.

Using multivariate techniques combine 30+ kinematic, decay-time, and topology variables to maximize S/B.

For each channel, we optimize the selection to isolate low-background signal using simulated and control-sample data.

CS selection efficiency: 35 - 79% $q\bar{q}$ background rejection: 96 - 99%

Two-body: $B^0 \to K^+\pi^-, B^0 \to \pi^+\pi^-$

Two tracks in the final state. Probe of tracking and PID.

Two-body: $B^+ \to K^+ \pi^0, B^+ \to \pi^+ \pi^0$

Challenge for π^0 reconstruction performance. Require good PID.

Two-body: $B^+ \to K^0 \pi^+, B^0 \to K^0 \pi^0$

Benchmark performance of $K_{\rm S}^0$ reconstruction.

Three-body: $B^+ \to K^+ \pi^- \pi^+, B^+ \to K^+ K^- K^+$

Rich Dalitz structure - multitude of peaking backgrounds.

CP asymmetries in two-body decays

CP asymmetries in three-body decays

 $B \to VP: B^+ \to \phi K^+, B^0 \to \phi K^0$

Require advanced analysis techniques.

 $\begin{aligned} \mathsf{N}_{\mathsf{sig}}(B^0 \to \phi K_S^0) & 16 \pm 5 \\ \textbf{First reconstruction in Belle II data!} \\ \mathscr{B} \begin{bmatrix} 10^{-6} \end{bmatrix} & 5.9 \pm 1.8(\mathsf{stat.}) \pm 0.7(\mathsf{syst.}) \end{aligned}$

PDG

 \mathscr{B} [10⁻⁶] 7.3 ± 0.7

 $B \rightarrow VV: B^+ \rightarrow \phi K^{*+}, B^0 \rightarrow \phi K^{*0}$

Require full angular analysis.

Summary

- First measurements of branching fraction and CP-asymmetries of charmless *B* decays with 35 fb⁻¹ of Y(4S) data.
- Results are in good agreement with known values, and performance is comparable with Belle's best. It proves good understanding of detector and tools.

Belle II is on track to lead searches of non-SM indications in quark dynamics.

Belle II hot charmless summer

$$\begin{split} \mathcal{B}(B^0 \to K^+\pi^-) &= [18.9 \pm 1.4(\mathrm{stat}) \pm 1.0(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^+ \to K^+\pi^0) &= [12.7^{+2.2}_{-2.1}(\mathrm{stat}) \pm 1.1(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^+ \to K^0\pi^+) &= [21.8^{+3.3}_{-3.0}(\mathrm{stat}) \pm 2.9(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^0 \to K^0\pi^0) &= [10.9^{+2.9}_{-2.6}(\mathrm{stat}) \pm 1.6(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^0 \to \pi^+\pi^-) &= [5.6^{+1.0}_{-0.9}(\mathrm{stat}) \pm 0.3(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^+ \to \pi^+\pi^0) &= [5.7 \pm 2.3(\mathrm{stat}) \pm 0.5(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^+ \to K^+K^-K^+) &= [32.0 \pm 2.2(\mathrm{stat}.) \pm 1.4(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{B}(B^+ \to K^+\pi^-\pi^+) &= [48.0 \pm 3.8(\mathrm{stat}) \pm 3.3(\mathrm{syst})] \times 10^{-6}, \\ \mathcal{A}(B^0 \to K^+\pi^-) &= 0.030^{+0.064}_{-0.064}(\mathrm{stat}) \pm 0.008(\mathrm{syst}), \\ \mathcal{A}(B^+ \to K^+\pi^0) &= 0.052^{+0.121}_{-0.114}(\mathrm{stat}) \pm 0.024(\mathrm{syst}), \\ \mathcal{A}(B^+ \to \pi^+\pi^0) &= -0.268^{+0.249}_{-0.322}(\mathrm{stat}) \pm 0.123(\mathrm{syst}), \\ \mathcal{A}(B^+ \to K^+K^-K^+) &= -0.049 \pm 0.063(\mathrm{stat}) \pm 0.022(\mathrm{syst}), \\ \mathcal{A}(B^+ \to K^+\pi^-\pi^+) &= -0.063 \pm 0.081(\mathrm{stat}) \pm 0.023(\mathrm{syst}). \end{split}$$

$6.7\pm1.1\pm0.5$
$5.9 \pm 1.8 \pm 0.7$
$1.1\pm0.4\pm0.2$
$21.7 \pm 4.6 \pm 1.9$
$11.0\pm2.1\pm1.1$
$2.0\pm0.6\pm0.3$
$0.58 \pm 0.23 \pm 0.02$
$0.57 \pm 0.20 \pm 0.04$

Systematic uncertainties

1. Tracking efficiency	2. K_S^0 reco. efficiency	3. π^0 reco. efficiency
A lower tracking efficiency in	A small decrease in K^0_S	Data/MC discrepancy.
data wrt. MC.	reconstruction efficiency.	
	1~% for each cm of flight length.	
For each final-state track $0.91~\%$	~ 12 %	~ 6 %
4. PID and CS efficiencies	5. Number of $Bar{B}$ pairs	6. Signal modelling
Data/MC discrepancy. Selection-depending.	Uncertainty on cross-section, integrated luminosity, potential beam energy shift.	Data/MC discrepancy for CDC hits distribution. Signal model choice.
$\sim 2 - 4 \%$	~ 2.7 %	~ 2 %
7. Background modelling	8. Peaking and $Bar{B}$ bkg bias	9. Instrumental asymmetries
Background model choice.	Modeling of peaking and $Bar{B}$ bkg.	$\mathcal{A}_{det}(K^+\pi^-) = -0.010 \pm 0.003$
		$\mathcal{A}_{det}(K^+) = -0.015 \pm 0.022$
		The uncertainty on the \mathscr{A}_{det} is
~ 3 %	~ 0.3 %	considered as systematic.

Systematic uncertainties

Source	$B^+ \to \phi K^+$	$B^+ o \phi K^{*+}$	$B^0 o \phi K^0_{\scriptscriptstyle S}$	$B^0 \to \phi K^{*0}$
Tracking efficiency (M)	2.7	4.6	3.6	3.6
K_s^0 reconstruction efficiency (M)	—	6.3	10.8	—
Kaon ID efficiency (M)	6.4	1.1	1.0	4.7
Number of $B\overline{B}$ events (M)	2.7	2.7	2.7	2.7
Modeling of $C_{\text{out}'}$ (A)	1.3	1.2	1.0	5.9
$B\overline{B}$ background yield (A)	0.3	1.2	1.4	2.3
Nonresonant yield (A)	3.1	1.8	4.5	3.2
SXF fraction (A)	—	0.6	—	1.0
Total multiplicative	7.5	8.3	11.7	6.5
Total additive	3.4	2.5	4.8	7.1
Total	8.2	8.7	12.7	9.7

Table 4: Summary of the systematic uncertainties (expressed in absolute values) affecting the measurement of f_L in the $B \to \phi K^*$ modes.

Source	$B^+ o \phi K^{*+}$	$B^0 o \phi K^{*0}$
Acceptance function	0.014	0.007
Modeling of $C_{\text{out'}}$	0.001	0.035
$B\overline{B}$ background yield	0.002	0.009
Nonresonant yield	0.006	0.008
SXF fraction	0.001	0.003
Total	0.015	0.038

Systematic uncertainties

TABLE IV. Summary of the (fractional) systematic uncertainties of the branching-fraction measurements.

Source	$K^+\pi^-$	$K^+\pi^0$	$K^0_{\rm S}\pi^+$	$K^0 \pi^0$	$\pi^+\pi^-$	$\pi^+\pi^0$	$K^+K^-K^+$	$K^+\pi^-\pi^+$
Tracking	1.8%	0.9%	2.7%	1.8%	1.8%	0.9%	2.7%	2.7%
$K_{\rm S}^0$ efficiency	-	-	12.5%	11.6%	-	-	-	-
π^0 efficiency	-	6.5%	-	6.5%	-	6.5%	-	-
PID and continuum-supp. eff.	1.1%	2.6%	0.9%	1.4%	1.3%	2.7%	2.3%	1.0%
$N_{B\bar{B}}$	2.7~%	2.7%	2.7%	2.7%	2.7%	2.7%	2.7%	2.7%
Signal model	1.1%	2.3%	< 0.1%	< 0.1%	4.5%	0.5%	0.6%	3.5%
Continuum bkg. model	4.2%	3.1%	1.5%	4.8%	< 0.1%	3.6%	0.3%	5.0%
$B\overline{B}$ bkg. model	0.4%	< 0.1%	-	-	1.6%	0.4%	-	0.2%
Total	5.5%	8.5%	13.2%	14.6%	5.9%	8.4%	4.4%	7.2%

TABLE V. Summary of (absolute) systematic uncertainties in the \mathcal{A}_{CP} measurements.

Source	$K^+\pi^-$	$K^+\pi^0$	$K^0_{\rm S}\pi^+$	$\pi^+\pi^0$	$K^+K^-K^+$	$K^+\pi^-\pi^+$
Signal model	0.005	0.001	0.007	0.005	0.001	0.003
Pkg./ $B\overline{B}$ /s×f background model	0.005	-	0.006	0.120	-	0.004
Instrumental asymmetry corrections	0.003	0.022	0.022	-	0.022	0.022
Total	0.008	0.022	0.024	0.121	0.022	0.023

-	Highlights of Belle II charmless program										
	PTEP ²⁰¹⁹ , 123C01 (654 pages) DOI: 10.1093/ptep/ptz106					1-1]					
	The Belle II Physics Book				overy) [ab						
	Process	Obse	wable	Theory	97 ^{5.}	dom. (DIS	ICb VS Bell	e Anoma	NY NP		
	$B \to \pi^0 K^0$	$A_{ m CP}$	$I_{K\pi}$	**	>50	***	***	***	**		
	$B \to \rho K$	$A_{ m CP}$, $I_{K\rho}$	*	$>\!50$	**	***	-	**		
	$B\to\rho K^*$	f	f_L ,		$>\!50$	**	**	-	***		
	$B \to K^+ K^- / \pi^+ \pi$	- Br.,	A_{CP}	**	$>\!50$	*	***	**	**		
	$B \to K\pi\pi, KKK$	A_{c}	CP	**	$>\!50$	**	*	***	*		
	$B_s \to K^0 \overline{K}^0$	Lifet	time	*	>5	**	***	-	**		
	$B o ho^\pm ho^0$	ϕ_2	***	>50)	*	***	*	*		
	$B \to \pi^0 \pi^0$	ϕ_2	**	> 50		***	***	**	**		
	$B \to \pi^0 K^0_S$	$S_{ m CP}$	**	>50		***	***	**	**		

_

Towards BSM using isospin

A precise sum rule among four $B \to K\pi$ CP asymmetries ¹

Michael Gronau

August 2005

A sum rule relation is proposed for direct CP asymmetries in $B \to K\pi$ decays. Leading terms are identical in the isospin symmetry limit, while subleading terms are equal in the flavor SU(3) and heavy quark limits. The sum rule predicts $A_{\rm CP}(B^0 \to K^0\pi^0) = -0.17\pm0.06$ using current asymmetry measurements for the other three $B \to K\pi$ decays. A violation of the sum rule would be evidence for New Physics in $b \to s\bar{q}q$ transitions.

$$I_{K\pi} = A_{CP}^{K^{+}\pi^{-}} + A_{CP}^{K^{0}\pi^{+}} \frac{Br(K^{0}\pi^{+})}{Br(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{CP}^{K^{+}\pi^{0}} \frac{Br(K^{+}\pi^{0})}{Br(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{CP}^{K^{0}\pi^{0}} \frac{Br(K^{0}\pi^{0})}{Br(K^{+}\pi^{-})} \frac{F_{B^{0}}}{F_{B^{+}}} - 2A_{CP}^{K^{0}\pi^{0}} \frac{F_{B^{0}}}{Br(K^{+}\pi^{-})} \frac{F_{B^{0}}}{F_{B^{+}}} - 2A_{CP}^{K^{0}\pi^{0}} \frac{F_{B^{0}}}{Br(K^{+}\pi^{-})} \frac{F_{B^{0}}}{F_{B^{+}}} - 2A_{CP}^{K^{0}\pi^{0}} \frac{F_{B^{0}}}{Br(K^{+}\pi^{-})} \frac{F_{B^{0}}}{F_{B^{+}}} \frac{F_{B^{0}}}{F_{B^{+}}} - 2A_{CP}^{K^{0}\pi^{0}} \frac{F_{B^{0}}}{Br(K^{+}\pi^{-})} \frac{F_{B^{0}}}{F_{B^{+}}} \frac{F_{$$

