

Measurement of the CP-violating phase ϕ_s in the B_s⁰ \rightarrow J/ ψ ϕ (1020) channel at 13 TeV by CMS

Enrico Lusiani^a, on behalf of the CMS collaboration ICHEP 2020 - 29/07/2020

^aUniversity & INFN, Padova (IT) **Contact:** enrico.lusiani@pd.infn.it

Introduction

Motivations

$$\phi_{s} = \phi_{mix} - 2\phi_{decay}$$

- \$\phi_s\$: CPV phase arising from interference between direct decays to a CP final state and decays through \$B_s^0\$-\$\overline{B}_s^0\$ mixing
- SM prediction: $\phi_s \simeq -2\beta_s = -36.96^{+0.72}_{-0.84}$ mrad [CKMfitter]
 - $\beta_s = arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$ is one of the angles of the unitary triangle
- New Physics can change the value of ϕ_s up to ~10 % via new particles contributing to the $B_s^0-\overline{B}_s^0$ mixing [JHEP04(2010)031]
- Current results agree with the SM, but the experimental uncertainty is much higher than the theoretical one
- $B_s^0 \rightarrow J/\psi \phi(1020)$ is a good channel to measure ϕ_s :
 - · No direct CPV
 - Only one CPV phase
 - Easy to reconstruct with high S/B ratio
- Several other interesting observables can be measured in the same analysis: Γ_s , $\Delta\Gamma_s$, Δm_s , $|\lambda| = \left| \frac{q}{p} \frac{\overline{A}_f}{A_f} \right|$

Overview

Angular analysis

- The final state is not a single CP eigenstate
- Time-dependent angular analysis is needed to disentagle CP-odd and CP-even components in the final state

Needed informations:

- Angular variables:
 - ψ_T : helicity angle of K⁺ in the ϕ rest frame
 - θ_T : polar angle of μ^+ in the J/ ψ rest frame
 - ϕ_T : azimuthal angle of μ^+ in the J/ ψ rest frame
- · Proper decay time of the meson
 - Proper decay time uncertainty is evaluated in each event
- Accurate flavour tagging to infer the initial flavour of the B_s^0 meson (the terms most sensitive to ϕ_s in the decay rate depend on this information)

Flavour tagging

- The angular analysis needs an accurate estimation of the initial flavour of the B⁰_s meson
- · Chosen algorithm: opposite-side (OS) muon
- Exploits b → μX decays of the other b in the event
- **Developed** using simulated $B_s^0 \rightarrow J/\psi \phi(1020)$ events
- Mistag probability evaluated on a per-event basis using a dedicated Neural Network
- The output is **calibrated** in data using $B^\pm \to J/\psi \ K^\pm$ self-tagging decays
- The average mistag is found to be ~27 %

CMS-BPH-20-001

Trigger strategy

A new trigger strategy is developed to enhance tagging efficiency $\epsilon_{tag} = \left(\frac{N_{tagged}}{N_{events}}\right)$

Trigger: J/ $\psi \rightarrow \mu^{+}\mu^{-}$ candidate plus an additional μ

- The additional muon is used to tag the B⁰_s flavour
- This trigger allows for an improved tagging efficiency in the sample, at the cost of a reduced number of selected signal events
- The luminosity for this analysis is 96.4 fb⁻¹,
 5 times that of the Run 1 analysis, but the number of events is similar
- Thanks to this trigger the tagging efficiency is ~50 %

Maximum likelihood fit and

results

Fit model

$$\begin{split} & \text{Event pdf: P = N}_{sig} P_{sig} + N_{bkg} P_{bkg} + N_{peak} P_{peak} \\ P_{sig} = \varepsilon(\text{ct}) \, \varepsilon(\Theta) \left[\mathcal{F}\left(\Theta, \text{ct}, \alpha\right) \otimes \frac{G\left(\text{ct}, \sigma_{\text{ct}}\right)}{G\left(\text{ct}, \sigma_{\text{ct}}\right)} \right] P_{sig}(m_{B_{s}^{0}}) P_{sig}\left(\sigma_{\text{ct}}\right) P_{sig}\left(\xi\right) \end{split}$$

- ϵ (ct) ϵ (Θ): efficiency functions
- $\mathcal{F}(\Theta, \mathsf{ct}, \alpha)$: differential decay rate
- $G(ct, \sigma_{ct})$: gaussian resolution model

- $P_{sig}(m_{B_2^0})$: signal mass pdf
- $P_{sig}(\sigma_{ct})$: signal σ_{ct} pdf
- $P_{sig}(\xi)$: tag distribution

$$P_{bkg} = P_{bkg}(\Theta)P_{bkg}(ct)P_{bkg}(m_{B_{S}^{0}})P_{bkg}(\sigma_{ct})P_{bkg}(\xi)$$

• $P_{bkg}(\Theta)P_{bkg}(ct)$: background angular and lifetime PDFs

$$P_{\text{peak}} = P_{\text{peak}}(\Theta)P_{\text{peak}}(\text{ct})P_{\text{peak}}(m_{\text{B}_{S}^{0}})P_{\text{peak}}(\sigma_{\text{ct}})P_{\text{peak}}(\xi)$$

- P_{peak} models the **peaking background** from $B^0 \to J/\psi \ K^{*0} \to \mu^+\mu^- \ K^{\pm}\pi^{\mp}$ where the π is reconstructed as a K
- Background from $\Lambda_b \to J/\psi K^{\pm}p^{\mp}$ is estimated to be negligible

Maximum likelihood fit

- The model parameters are estimated using an unbinned maximum likelihood fit
- Input observables: $\cos\theta_{\rm T}, \cos\psi_{\rm T}, \varphi_{\rm T}, {\rm ct,} \, \sigma({\rm ct}), \, {\rm m_{B_S^0}}, \, {\rm tag}$ decision, $\omega_{\rm tag}$
- Physics parameters: ϕ_s , $\Delta\Gamma_s$, Γ_s , Δm_s , $|\lambda|$, $|A_0|^2$, $|A_\perp|^2$, $|A_S|^2$, δ_{\parallel} , δ_{\perp} , $\delta_{S\perp}$

Fit results: 1D projections

Systematic uncertainties

	φ _s [mrad]	ΔΓ_s [ps ⁻¹]	Δm_s [ħps ⁻¹]	ĮλĮ	Γ _s [ps ⁻¹]	A ₀ ²	A ²	A _S ²	δ [rad]	δ ⊥ [rad]	δ _{s⊥} [rad]
Model bias	7.9	0.0019	_	0.0035	0.0005	0.0002	0.0012	0.001	0.020	0.016	0.006
Angular efficiency	3.8	0.0006	0.007	0.0057	0.0002	0.0008	0.0010	0.002	0.006	0.015	0.015
Proper decay length efficiency	0.3	0.0062	0.001	0.0002	0.0022	0.0014	0.0023	0.001	0.001	0.002	0.002
Proper decay length resolution	2.5	0.0008	0.015	0.0009	0.0005	0.0007	0.0009	0.007	0.006	0.025	0.022
Data/simulation difference	0.6	0.0008	0.004	0.0003	0.0003	0.0044	0.0029	0.007	0.007	0.007	0.028
Flavor tagging	0.1	<10 ⁻⁴	0.001	0.0002	<10 ⁻⁴	0.0003	<10 ⁻⁴	<10 ⁻³	0.001	0.003	0.001
Sig./bkg. ω _{evt} difference	3.0	_	_	_	0.0005	_	0.0008	_	_	_	0.006
Model assumptions	_	0.0008	_	0.0046	0.0003	_	0.0013	0.001	0.017	0.019	0.011
Peaking background	0.3	0.0008	0.011	<10-4	0.0002	0.0005	0.0002	0.003	0.005	0.007	0.011
S-P wave interference	_	0.0010	0.019	_	0.0005	0.0005	_	0.013	_	0.019	0.019
Total systematic uncertainty	9.6	0.0067	0.028	0.0082	0.0024	0.0048	0.0044	0.016	0.028	0.045	0.047

CMS-BPH-20-001

In red are the leading systematic uncertainties for the main parameters:

- ϕ_s : model bias and angular efficiency
- $\Delta\Gamma_s$, Γ_s : lifetime efficiency
- Δm_s : lifetime resolution and peaking background
- |λ|: angular efficiency and model assumption

Results

Parameter	Fit value	Stat. uncer.	Syst. uncer.		
ϕ_s [mrad]	-11	±50	± 10		
$\Delta\Gamma_{\rm s}$ [ps ⁻¹]	0.114	± 0.014	± 0.007		
$\Delta m_s [\hbar p s^{-1}]$	17.51	+ 0.10 - 0.09	± 0.03		
Γ _s [ps ⁻¹]	0.6531	± 0.0042	± 0.0024		
lλl	0.972	± 0.026	± 0.008		
$ A_0 ^2$	0.5350	± 0.0047	± 0.0048		
$ A_{\perp} ^2$	0.2337	± 0.0063	± 0.0044		
$ A_S ^2$	0.022	+ 0.008 - 0.007	± 0.016		
δ _{II} [rad]	3.18	± 0.12	± 0.03		
δ⊥̈ [rad]	2.77	± 0.16	± 0.04		
$\delta_{S\perp}$ [rad]	0.221	+ 0.083 - 0.070	± 0.048		

CMS-BPH-20-001

• ϕ_s and $\Delta\Gamma_s$ are in agreement with the SM (CKMfitter, arXiv:1912.07621):

$$\phi_s^{SM} = -36.96^{+0.72}_{-0.84} \text{ mrad}$$

 $\Delta \Gamma_s^{SM} = 0.091 \pm 0.013 \text{ ps}^{-1}$

 Γ_s and Δm_s are consistent with the world average (Phys. Rev. D 98 (2018) 030001):

$$\Gamma_s^{WA} = 0.6624 \pm 0.0018 \, ps^{-1}$$

$$\Delta m_s^{WA} = 17.757 \pm 0.021 \, \hbar ps^{-1}$$

- $|\lambda|$ is consistent with no direct CP violation $(|\lambda| = 1)$
- This is the first measurement by CMS of Δm_s and $|\lambda|$

Combination with 8 TeV results

• The results are **combined** with those from the previous analysis at \sqrt{s} = 8 TeV (Phys. Lett. B 757 (2016) 97)

 The combination is in agreement with the SM

$$\phi_{\rm s} = -21 \pm 45 \,\text{mrad}$$

 $\Delta \Gamma_{\rm s} = 0.1073 \pm 0.0097 \,\text{ps}^{-1}$

- ϕ_s uncertainty is greatly improved thanks to the increase in tag accuracy due to the new trigger strategy
- $\Delta\Gamma_s$ on the other hand is not sensitive to the tagging performance and its precision is similar in the two analyses

Conclusions

Summary

- The **CPV phase** ϕ_s and the **decay width difference** $\Delta\Gamma_s$ are measured using 48500 B_s⁰ \rightarrow J/ ψ ϕ (1020) $\rightarrow \mu^+\mu^-$ K⁺K⁻ signal events, collected by CMS at \sqrt{s} = 13 TeV, corresponding to \mathcal{L}_{int} = 96.4 fb⁻¹
- A **novel** opposite-side muon tagger based on deep neural networks has been developed to directly predict the mistag probability on per-event basis, leading to improved precision in the ϕ_s measurement
- The results are **combined** with those from the \sqrt{s} = 8 TeV analysis, yielding

$$\phi_{\rm s}$$
 = -21 ± 45 mrad
 $\Delta\Gamma_{\rm s}$ = 0.1073 ± 0.0097 ps⁻¹

Results are consistent with the Standard Model predictions:

$$\phi_s^{SM} = -36.96^{+0.72}_{-0.84} \text{ mrad}$$
 $\Delta \Gamma_s^{SM} = 0.091 \pm 0.013 \text{ ps}^{-1}$

Article CMS-BPH-20-001 is available at arXiv:2007.02434

Outlook

Comparison with other LHC experiments in the $B_s^0 \rightarrow J/\psi \phi(1020)$ channel

	φ _s [mrad]	ΔΓ _s [ps ⁻¹]	Reference
CMS	-21 ± 45	0.1073 ± 0.0097	CMS-BPH-20-001
ATLAS	-87 ± 41	0.0641 ± 0.0049	CERN-EP-2019-218
LHCb	-81 ± 32	0.0777 ± 0.0062	EUR.PHYS.J.C79(2019)706
SM	$-36.96^{+0.72}_{-0.84}$	0.091 ± 0.013	CKMfitter, arXiv:1912.07621

Future plans

- CMS plans to analyze the **full Run-2 dataset**, adding a complementary trigger that requires a displaced J/ ψ plus two charged tracks
 - To achieve an even better tagging performance an electron- and jet-based taggers will be used together with the current muon-based one
- The precision in the measurement is expected to improve by 30 % for ϕ_s and by a factor ~ 2 for $\Delta\Gamma_s$

Thanks for your attention!

Decay rate model

$$\frac{d^4\Gamma(B_s^0(t))}{d\Theta dt} = \mathcal{F}(\Theta, t, \alpha) = \sum_{i=1}^{10} \mathcal{O}_i(\alpha, t) \cdot g_i(\Theta)$$

$$\mathcal{O}_i = N_i e^{-t/\tau} \left[a_i \cosh \left(\frac{1}{2} \underline{\Delta \Gamma}_s t \right) + b_i \sinh \left(\frac{1}{2} \underline{\Delta \Gamma}_s t \right) + c_i \xi (1 - 2\omega) \cos \left(\underline{\Delta m}_s t \right) + d_i \xi (1 - 2\omega) \sin \left(\underline{\Delta m}_s t \right) \right]$$

i	$g_i(\theta_T, \psi_T, \phi_T)$	Ni	a _i	bį	c _i	d _i
1	2 cos2 ψT(1 - sin2 θT cos2 φT)	A ₀ ²	1	D	С	-S
2	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$	A ²	1	D	С	-S
3	sin ² ψ _T sin ² θ _T	A _⊥ ²	1	-D	С	S
4	- sin ² ψ _T sin 2θ _T sin φ _T	A A ₊	Csin(δ _⊥ - δ)	$S cos(\delta_{\perp} - \delta_{\parallel})$	sin(δ _⊥ - δ)	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{\sqrt{2}} \sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$	A ₀ A	$cos(\delta_{\parallel} - \delta_{0})$	$D\cos(\delta_{\parallel} - \delta_{0})$	$C\cos(\delta_{\parallel} - \delta_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$\frac{1}{\sqrt{2}} \sin 2\psi_T \sin 2\theta_T \cos \varphi_T$	A ₀ A ₁	$C \sin(\delta_{\perp} - \delta_0)$	$S cos(\delta_{\perp} - \delta_0)$	$sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp} - \delta_0)$
7	$\frac{2}{3}$ (1 - sin ² $\theta_T \cos^2 \varphi_T$)	$ A_S ^2$	1	-D	С	S
8	$\frac{1}{3}\sqrt{6} \sin \psi_{T} \sin^{2} \theta_{T} \sin 2\phi_{T}$	A _S A	$C \cos(\delta_{\parallel} - \delta_{S})$	S sin(δ - δ _S)	cos(δ _{II} - δ _S)	Dsin(δ - δ _S)
9	$\frac{1}{3}\sqrt{6}\sin \psi_{T}\sin 2\theta_{T}\cos \psi_{T}$	A _S A _L	$sin(\delta_{\perp} - \delta_{S})$	-D sin(δ _⊥ - δ _S)	C sin(δ _⊥ – δ _S)	$S \sin(\delta_{\perp} - \delta_{S})$
10	$\frac{4}{3}\sqrt{3}\cos\psi_{T}(1-\sin^2\theta_{T}\cos^2\phi_{T})$	A _S A ₀	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0 - \delta_S)$	$cos(\delta_0 - \delta_S)$	$D \sin(\delta_0 - \delta_S)$

$$C = \frac{1-|\lambda|^2}{1+|\lambda|^2}, \qquad S = -\frac{2|\lambda|\sin\phi_s}{1+|\lambda|^2}, \qquad D = -\frac{2|\lambda|\cos\phi_s}{1+|\lambda|^2}, \qquad \lambda = \frac{q}{p}\frac{\overline{A}_f}{A_f}.$$

Conventions: $|A_{\parallel}|^2 = 1 - |A_0|^2 - |A_{\perp}|^2$, $\delta_{S\perp} = \delta_S - \delta_{\perp}$, $\delta_0 = 0$.

Lifetime efficiency

- The reconstruction efficiency is **not** independent from the decay length
- To accurately model the signal PDF we need to parametrize this effect
- Efficiency is evaluated in simulated samples and fitted separately for the two years of data taking
- Fit function is $\epsilon(ct) = e^{-a \cdot ct} \cdot \text{Chebyshev4(ct)}$

Angular efficiency

- Angular efficiency is first evaluated on a 3D grid
 - Numerator from a simulated $\Delta\Gamma_s = 0$ sample where we applied the full reconstruction
 - · Denominator from a special GEN-only sample
 - the grid has 70 bins in $\cos \theta_{\rm T}$ and $\cos \psi_{\rm T}$, 30 in $\varphi_{\rm T}$
- · Efficiency histogram is projected on an orthornomal basis, defined as

$$b_{lkm}(\Theta) = P_l^m(\cos\theta_T) \cdot P_k^m(\cos\psi_T) \cdot \begin{cases} \sin(m\phi_T) & \text{if } m < 0 \\ \cos(m\phi_T) & \text{if } m > 0 \\ 1/2 & \text{if } m = 0 \end{cases}$$

- P_l^{m} are the Legendre polynomials
- k and l are allowed to go up to order 6
- efficiency is

$$\epsilon(\Theta) = \sum_{l,k,m} c_{lkm} b_{lkm}(\Theta)$$

where c_{Ikm} is the projection coefficient

S/P wave interfence

- The fit model does not take into account the difference in the invariant mass dependence between the P-wave from the $B_s^0\to J/\psi$ $\phi(1020)$ decay and the S-wave
- \cdot This adds an additional factor k_{SP} to their interference
- The k_{SP} factor is computed by integrating the P and S-wave interference term in the φ candidate mass range, assuming that the P-wave amplitude is describedby a relativistic Breit–Wigner distribution and the S-wave amplitude by a constant, and found to be k_{SP} = 0.54
- The systematic is evaluated generating 1000 pseudo-experiments using the model with the correct factor and fitting each of them with the main model
- · For each fit the pull is evaluated
- The distribution of the pulls is fitted to a gaussian
- The mean of the gaussian, if significantly different from 0 (1-sigma) is used to compute the systematic error
- The error was found to have little effects in all parameters save for the S-wave strong phase and amplitude