

Production studies of double Bottomonia at CMS

Sheila Amaral Universidade do Estado do Rio de Janeiro on behalf of CMS collaboration

Outline

- 1. Motivation: the quarkonium production
- 2. CMS detector
- 3. Recent CMS measurements (<u>CMS-BPH-18-002</u> <u>Phys. Lett. B 808 (2020) 135578</u>):
 - Y(1S) pair production cross section and search for resonances decaying to Y(1S) $\mu^{+}\mu^{-}$
- 4. Conclusions

Motivation

- Quarkonium pair production is an important probe of both perturbative and nonperturbative processes in QCD
- Insight into particle production at LHC:
 - Single-parton scattering (SPS): dominant → strongly correlated → small $|\Delta y|$
 - Double-parton scattering (DPS): difficult to calculate → less correlated → large $|\Delta y|$
- Potential ground for discovery for tetraquark bound state or generic resonances with masses close to twice the Y(1S) meson mass.

CMS detector and Muon trigger

- The Muon system, the Silicon Tracker and the Magnetic Field system allow the measurement of muon pairs over a wide range of η and p_{τ} .
- A flexible trigger system accommodates Higgs physics, SUSY searches, and even quarkonium.

Production of Double Bottomonia @CMS, ICHEP2020

<u>CMS-BPH-18-002</u> Phys. Lett. B 808 (2020) 135578

Y(1S) pair production cross section and search for resonances decaying to Y(1S) $\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV

<u>CMS-BPH-18-002</u> Phys. Lett. B 808 (2020) 135578

Yields extraction

- Unbinned two-dimensional maximum likelihood fit to invariant mass distributions of two OS muon pairs
 - Signal: sum of two Crystal Ball functions
 - The contribution from Y(2S) and Y(3S) modeled with Gaussian function
 - The combinatorial background are modeled with 2nd Chebychev polynomials
- Yields are corrected for the four muons efficiency and acceptance

Projection of the 2D fit (line) to the m_{12} invariant mass distribution (points) for the SPS $\mathbf{Y}(1S)\mathbf{Y}(1S)$ simulation. The vertical bars on the points show the statistical uncertainty only.

Production of Double Bottomonia @CMS, ICHEP2020

Measurement of the fiducial cross-section CMS-BPH-18-002 Phys. Lett. B 808 (2020) 135578

Assuming unpolarized Y(1S) meson:

 $\sigma_{fid} = \frac{N^{corr}}{\mathcal{LB}^2}$ $\mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) = (2.48 \pm 0.05)\%$

$$\sigma_{fid} = 79 \pm 11(stat) \pm 6(syst) \pm 3(\mathcal{B}) \ pb$$

 $\left\{ \begin{array}{l} \text{Previous CMS measurement, in the same fiducial} \\ \text{region at 8 TeV } (\underline{\texttt{JHEP05 (2017) 013}}) \\ \sigma_{fid} = 69 \pm 13(stat) \pm 7(syst) \pm 3(\mathcal{B}) \ pb \end{array} \right\}$

Backgrounds:

- Y(2S)+Y(2S)
- Y(3S)+Y(3S)
- **Y**(2S)+**Y**(1S)
- Y(3S)+Y(1S)
- Y(1S)+Combinatorial bkg
- Y(2S)+Combinatorial bkg
- Y(3S)+Combinatorial bkg
- Combinatorial bkg + Combinatorial bkg

S. Amaral

Production of Double Bottomonia @CMS, ICHEP2020

Effect of the polarization

- Quarkonia polarizations are measured from angular distributions of µµ decays
- The polarization of the Y(1S) states affects the angular distributions of the leptons produced in the $Y(1S) \rightarrow \mu^+ \mu^-$ decays through the following formula:

$$rac{d^2N}{d\cos heta d\phi} \propto rac{1}{3+\lambda_ heta} (1+\lambda_ heta\cos^2 heta+\lambda_\phi\sin^2 heta\cos2\phi+\lambda_{ heta\phi}\sin2 heta\cos\phi)$$

Where θ and ϕ are the polar and azimuthal angles, respectively, of the positively charged muon with respect to the the z axis of the polarization frame.

Measurement of the DPS-to-inclusive fraction: Methodology

<u>CMS-BPH-18-002</u> Phys. Lett. B 808 (2020) 135578

DPS production \Rightarrow large $|\Delta y(Y(1S), Y(1S))|$, largely uncorrelated, and large $m_{Y(1S)Y}$

(1S)

- The distributions of $\Delta \phi$ (Y(1S),Y(1S)), ΔR (Y(1S),Y(1S)) and p_T(Y(1S),Y(1S)) also differ for the SPS and DPS, but large theoretical uncertainties.
- Methodology to extract the fraction:

The fraction is measured with a binned maximum likelihood fit of these 2 simulated distribution to the measured $\sigma_{\rm fid}$ is measured in 5 bins of $|\Delta y(\Upsilon(1S),\Upsilon(1S))|$ and 5 bins of m_{Y(1S)Y(1S)}

Measurement of the DPS-to-inclusive fraction: Results

S. Amaral

Production of Double Bottomonia @CMS, ICHEP2020

CMS-BPH-18-002

Phys. Lett. B 808 (2020) 135578

Search for resonances: Methodology

- Yields extraction: unbinned maximum-likelihood fit to the spectrum

 Signal: sum of two Gaussian
 Background:

 Yields extraction: unbinned maximum-likelihood fit to the spectrum

 Signal: sum of two Gaussian
 Background:
 - Simulated Y(1S)Y(1S) process: product of
 sigmoid and exponential function
 - Combinatorial background is obtained in the fit from data in the signal region: smooth function (Chebychev pol. various orders; sum of Gaussian and Chebychev; sum of $\widetilde{m}_{4\mu}$ (GeV)

Production of Double Bottomonia @CMS, ICHEP2020

Search for resonances: tetraquark

<u>CMS-BPH-18-002</u> Phys. Lett. B 808 (2020) 135578

• A example signal for tetraquark model with mass of 19 GeV, which has a significance of about 1σ

Y(1S) pair production is a background to the resonance search

Search for resonances: Results

<u>CMS-BPH-18-002</u> Phys. Lett. B 808 (2020) 135578

Tetraquarks with masses between 17.5 GeV and 19.5 GeV Generic narrow resonance with mass around 16.5 GeV and 27 GeV

Observed upper limits 95% CL on the product of the cross section and branching fraction for a tetraquark (upper left), scalar (upper right), pseudoscalar (lower left), and spin-2 (lower right) states.

The largest excess is observed for a resonance mass of 25.1 GeV, and has a local significance of 2.4σ for the scalar signal hypothesis

Production of Double Bottomonia @CMS, ICHEP2020

Summary

- The fiducial cross section for Y(1S) in the fiducial region where both Y(1S) mesons have an absolute rapidity below 2.0 at √s = 13 TeV is measured at CMS with 2016 data (35.9 fb⁻¹).
 - The result are presented assuming that the Y(1S) mesons are produced unpolarized, and also the effect of the polarization was showed.
- The contribution of DPS to the total inclusive Y(1S) pair production cross section is determined for the first time.
- The results of a search are also presented for a light narrow resonance, such as tetraquark or a bound state BSM, decaying to a Y(1S) and a pair of opposite-sign muons.
 - No excess of events compatible with a signal is observed

Conclusions

• CMS has produced several new results in the field of quarkonium production and polarization.

• Thanks for listening!

Backup Slides

Systematic uncertainties in the Y(1S) pair production

Table 1: Systematic uncertainties considered in the Y(1S) pair production cross section measurement. The last column gives the associated absolute uncertainty in the measurement of $\sigma_{\rm fid}$.

Uncertainty source	Uncertainty (%)	Impact on $\sigma_{\rm fid}$ (pb)
Integrated luminosity	2.5	2.0
Muon identification	2.0	1.6
Trigger	6.0	4.7
Vertex probability	1.0	0.8
$\mathcal{B}(Y(1S) \rightarrow \mu^+\mu^-)$	4.0	3.2
Signal and background models	1.2	1.0
Method closure	1.5	1.2
Total	8.1	6.4