ICHEP 2020

Complementary test of

 lepton flavor universality violation in $B_{s} \rightarrow f_{2}^{\prime}(1525)\left(\rightarrow K^{+} K^{-}\right) \mu^{+} \mu^{-}$decaysN Rajeev ${ }^{1}$, Rupak Dutta ${ }^{1}$ and Niladribihari Sahoo ${ }^{2}$
${ }^{1}$ National Institute Technology Silchar (India)
${ }^{2}$ University of Warwick (United Kingdom)

$$
31 \text { - July - } 2020
$$

Introduction

- Quarks come in six flavors - up, down, charm, strange, top and bottom..
- Weak interactions allow quarks to swap their flavors for another.
- The swapping process of the quark flavors occur in two ways (FCCC \& FCNC).
- In SM, the flavor changing processes inherits a fundamental property/ symmetry called the lepton flavor universality (LFU).
- In SM, couplings of the gauge bosons to leptons are independent of lepton flavor.
- Any sign of the lepton flavour non-universality would be a direct sign for the New Physics.

LFU violation

- The evidence of the violation of the LFU have been observed both in the FCCC and FCNC quark level transitions.
- The significant deviations have been reported in various flavor observables such as
- $R_{K}, R_{K^{*}}, P_{5}^{\prime}$ in $B \rightarrow K^{(*)} l^{+} l^{-}$decays;
- The branching ratio of $\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$;
- $R_{D}, R_{D^{*}}, P_{D^{*}}^{\tau}, F_{L}^{D^{*}}$ in $B \rightarrow D^{(*)} l \nu$ decays;
- $R_{J / \Psi}$ in $B_{C} \xrightarrow{\rightarrow} J / \Psi l \nu$ decays.
- Various extensions to the SM have addressed the underlying discrepancies.
- We discuss the opportunities to look for NP associated with the similar $b \rightarrow s l^{+} l^{-}$transitions.
- The SM does not allow tree level contribution to the $b \rightarrow s l^{+} l^{-}$ decays and hence they are highly suppressed.

- There are other possibilities as well: including Z^{\prime} and $L Q$.
- Hence, these neutral decays provide an increased sensitivity to the possible existence of new physics.
- The SM predictions come with the large hadronic uncertainties.
- The hadronic uncertainties are reduced in some theoretically clean observables such as the ratio of branching ratio $R_{H_{s}}$:

$$
R_{H_{s}}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma}{d q^{2}}\left(H_{b} \rightarrow H_{s} \mu^{+} \mu^{-}\right) d q^{2}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma}{d q^{2}}\left(H_{b} \rightarrow H_{s} e^{+} e^{-}\right) d q^{2}}
$$

- The angular analysis allow us to construct set of optimized observables P_{i} 's with reduced form factor dependency.

$$
\left\langle P_{5}^{\prime}\right\rangle=\frac{\int_{b i n} d q^{2} I_{5}}{2 \sqrt{-\int_{b i n} d q^{2} I_{2}^{c} \int_{b i n} d q^{2} I_{2}^{s}}}
$$

Motivation - Anomalies

$R_{K^{(\cdot)}}$ anomaly

	q^{2} bins	Theoretical predictions	Experimental measurements	Deviation
R_{K}	[1.0, 6.0]	1 ± 0.01 Hiller et al., PRD 69, 074020 (2004), Bordone et al., EPJ. C 76,8,440 (2016)	$0.846_{-0.054}^{+0.060} \text { (stat) }{ }_{-0.014}^{+0.016} \text { (syst) }$ [LHCb] PRL 122, no.19,191801 (2019)	$\sim 2.5 \sigma$
$R_{K^{*}}$	[0.045, 1.1]		$\begin{gathered} 0.660_{-0.070}^{+0.110} \text { (stat) } \pm 0.024 \text { (syst) } \\ \text { [LHCb] JHEP 08, 055 (2017) } \\ 0.52_{-0.26}^{+0.36} \text { (stat) } \pm 0.05 \text { (syst) } \\ \text { [Belle], axXiv:1904.02440 } \end{gathered}$	$\sim 2.1-2.5 \sigma$
	[1.1, 6.0]		$\begin{gathered} \hline 0.685_{-0.069}^{+0.113} \text { (stat) } \pm 0.047 \text { (syst) } \\ \text { [LHCb] JHEP 08, 055 (2017) } \\ 0.96_{-0.29}^{+0.45} \text { (stat) } \pm 0.11 \text { (syst) } \\ \text { [Belle], arxiv: } 1904.02440 \end{gathered}$	

- The ratio R_{K} is measured by LHCb (Run $1+\operatorname{Run} 2$)in the q^{2} bin of $[1,6] \mathrm{GeV}^{2}$.
- This R_{K} measurement is consistent with SM expectations at the level of 2.5σ.
- The ratio $R_{K^{*}}$ is measured by LHCb and Belle in the two q^{2} bins: $[0.045,1.1]$ and $[1.1,6] \mathrm{GeV}^{2}$.
- This $R_{K^{*}}$ measurement is consistent with SM expectations at the level of $2.1-2.3 \sigma$ (low) and $2.4-2.5 \sigma$ (central).

$R_{K^{(*)}}$ anomaly

Fig credits: Symmetry magazine

	q^{2} bins	Theoretical predictions	Experimental measurements	Deviation
P_{5}^{\prime}	[4.0, 6.0]	-0.757 ± 0.074 Sebastien et al., JHEP 05, 137 (2013)	-0.21 ± 0.15	$\sim 3.3 \sigma$
	[4.3, 6.0]	$-0.774_{-0.059-0.093}^{+0.0 .061+0.087}$ Sebastien et al., JHEP 01, 048 (2013)	$\begin{gathered} -0.96_{-0.21}^{+0.22}(\text { stat }) \pm 0.16 \text { (syst) } \\ \text { CMSASS-BPH-15-008 } \end{gathered}$	$\sim 1.0 \sigma$
	[4.0, 8.0]	-0.881 ± 0.082 Sebastien et al., JHEP 12, 125 (2014)	$-0.267_{-0.269}^{+0.275}(\text { stat }) \pm 0.049 \text { (syst) }$	$\sim 2.1 \sigma$

- P_{5}^{\prime} : the angular distributions of $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- The P_{5}^{\prime} measured by ATLAS and LHCb in the bin $q^{2} \in[4,6] \mathrm{GeV}^{2}$
- These measurements differ by $\sim 3.3 \sigma$ from the SM expectations
- The P_{5}^{\prime} measured by CMS in $q^{2} \in[4.3,6] \mathrm{GeV}^{2}$ differ by 1σ from the SM expectations
- The P_{5}^{\prime} measured by Belle in $q^{2} \in[4,8] \mathrm{GeV}^{2}$ differ by 2.1σ from the SM expectations.

	q^{2} bins	Theoretical predictions	Experimental measurements	Deviation
$\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$	$[1.0,6.0]$	$(5.39 \pm 0.66) \times 10^{-8}$ CDF Collaboration, CDF-NOTE-10894	$(2.57 \pm 0.37) \times 10^{-8}$ $[$ LLHCb] JHEP 09(2015) 179	$\sim 3.7 \sigma$

- $\mathcal{B}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$is measured by LHCb.
- The measured value is found to deviate at the level of $\sim 3.7 \sigma$ from the SM expectations.
- In this context, we perform an angular study of
$B_{s} \rightarrow f_{2}^{\prime}\left(\rightarrow K^{+} K^{-}\right) \mu^{+} \mu^{-}$decays and provide a complementary information on the lepton flavor universality violation.
- This analysis is well motivated since,
- This decay has received less attention so far.
- Not many experimental results on electroweak penguin decays involving spin 2 particles.
- This decay can be detected easily at the LHCb detector.

Theory

- The SM extension of the effective Hamiltonian by allowing the NP contributions:

$$
\begin{array}{r}
\mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha_{e}}{4 \pi}\left(C_{9}^{\text {eff }} \mathcal{O}_{9}+C_{10}^{\text {eff }} \mathcal{O}_{10}-\frac{2 m_{b}}{q^{2}} C_{7}^{\text {eff }} \mathcal{O}_{7}\right. \\
\left.+C_{9}^{N P} \mathcal{O}_{9}^{N P}+C_{10}^{N P} \mathcal{O}_{10}^{N P}+C_{9}^{\prime} \mathcal{O}_{9}^{\prime}+C_{10}^{\prime} \mathcal{O}_{10}^{\prime}\right)
\end{array}
$$

$$
\begin{aligned}
& \mathcal{O}_{9}=\left[\bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} l\right] ; \quad \mathcal{O}_{10}=\left[\bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} \gamma_{5} l\right] ; \\
& \mathcal{O}_{7}=\left[\bar{s} i q_{\nu} \sigma^{\mu \nu} P_{R} b \bar{l} \gamma_{\mu} l\right] ; \\
& \mathcal{O}_{9}^{N P}=\left[\bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} l\right] ; \quad \mathcal{O}_{10}^{N P}=\left[\bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} \gamma_{5} l\right] ; \\
& \mathcal{O}_{9}^{\prime}=\left[\bar{s} \gamma^{\mu} P_{R} b \bar{l} \gamma_{\mu} l\right] ; \quad \mathcal{O}_{10}^{\prime}=\left[\bar{s} \gamma^{\mu} P_{R} b \bar{l} \gamma_{\mu} \gamma_{5} l\right] .
\end{aligned}
$$

- The values for each WC obtained are in the leading logarithmic approximation at the energy scale $\mu=m_{b, p o l e}$. A. J. Buras et al.,PRD 52 , 186-195 (1995).
- Similarly, the values for each new WC are considered from the global fits. A. K. Alok et al., JHEP 06, 089 (2019)

Theory

- We consider in total $7(1 \mathrm{D} \rightarrow 4 \& 2 \mathrm{D} \rightarrow 3)$ NP scenarios A. к. Alok et al.,JHEP 06, 089 (2019)

WCs	$C_{9}^{N P}$	$C_{10}^{N P}$	$C_{9}^{N P}=-C_{10}^{N P}$	$C_{9}^{N P}=-C_{9}^{\prime}$	$\left(C_{9}^{N P}, C_{10}^{N P}\right)$	$\left(C_{9}^{N P}=-C_{9}^{\prime}\right)$	$\left(C_{9}^{N P}=-C_{10}^{\prime}\right)$
Best fits	-1.07	+0.78	-0.52	-1.11	$(-0.94,+0.23)$	$(-1.27,+0.68)$	$(-1.36,-0.46)$

- The $B_{s} \rightarrow f_{2}^{\prime}$ hadronic matrix elements are obtained using the perturbative QCD approach (pQCD) R. H. Li et al.,PRD 83, 034034 (2011).
- Using the helicity amplitude techniques, we get partial decay width: R. H. Li et al.,PRD 83, 034034 (2011)

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{3}{8}\left[\left|\mathcal{M}_{b}\right|^{2}\right]
$$

- where, $\left|\mathcal{M}_{b}\right|^{2}$ is decomposed into 11 angular coefficients I_{i} 's
- The differential decay rate is given by

$$
\frac{d \Gamma}{d q^{2}}=\frac{1}{4}\left[3 I_{1}^{c}+6 I_{1}^{s}-I_{2}^{c}-2 I_{2}^{s}\right]
$$

Physical observables

$$
D B R\left(q^{2}\right)=\frac{d \Gamma / d q^{2}}{\Gamma_{\text {Total }}}
$$

$$
\left\langle P_{1}\right\rangle=\frac{1}{2} \frac{\int_{b i n} d q^{2} I_{3}}{\int_{b i n} d q^{2} I_{2}^{s}},\left\langle P_{2}\right\rangle=\frac{1}{8} \frac{\int_{b i n} d q^{2} I_{6}}{\int_{b i n} d q^{2} I_{2}^{s}}
$$

$$
A_{F B}\left(q^{2}\right)=\frac{3 I_{6}}{3 I_{1}^{c}+6 I_{1}^{s}-I_{2}^{c}-2 I_{2}^{s}}
$$

$$
F_{L}\left(q^{2}\right)=\frac{3 I_{1}^{c}-I_{2}^{c}}{3 I_{1}^{c}+6 I_{1}^{s}-I_{2}^{c}-2 I_{2}^{s}}
$$

$$
\begin{aligned}
\left\langle P_{4}^{\prime}\right\rangle & =\frac{\int_{b i n} d q^{2} I_{4}}{\sqrt{-\int_{b i n} d q^{2} I_{2}^{c} \int_{b i n} d q^{2} I_{2}^{s}}} \\
\left\langle P_{5}^{\prime}\right\rangle & =\frac{\int_{b i n} d q^{2} I_{5}}{2 \sqrt{-\int_{b i n} d q^{2} I_{2}^{c} \int_{b i n} d q^{2} I_{2}^{s}}}
\end{aligned}
$$

$$
\begin{array}{r}
\left\langle Q_{F_{L}}\right\rangle=\left\langle{F_{L}}^{\mu}\right\rangle-\left\langle F_{L}{ }^{e}\right\rangle, \\
\left\langle Q_{A_{F B}}\right\rangle=\left\langle A_{F B}{ }^{\mu}\right\rangle-\left\langle A_{F B}{ }^{e}\right\rangle, \\
\left\langle Q_{i}^{(\prime)}\right\rangle=\left\langle P_{i}^{(\prime) \mu}\right\rangle-\left\langle P_{i}^{(\prime) e}\right\rangle
\end{array}
$$

SM predictions

- In SM, we assume all the new vector and the axial vector NP WCs $C_{9,10}^{N P}$ and $C_{9,10}^{\prime}$ to be zero.
- $A_{F B}\left(q^{2}\right), P_{2}\left(q^{2}\right), P_{4}^{\prime}\left(q^{2}\right)$, and $P_{5}^{\prime}\left(q^{2}\right)$ make intersections with the zero line.
- $A_{F B}\left(q^{2}\right)$ and $P_{2}\left(q^{2}\right)$ have same zero crossing points at $q^{2} \sim 3 \mathrm{GeV}^{2}$.
- $P_{4}^{\prime}\left(q^{2}\right)$ and $P_{5}^{\prime}\left(q^{2}\right)$ have the zero crossings at $q^{2} \sim 1.4 \mathrm{GeV}^{2}$ and $q^{2} \sim 1.6 \mathrm{GeV}^{2}$.
- $P_{1}\left(q^{2}\right)$ is almost zero in the low q^{2}
- $R_{f_{2}^{\prime}}\left(q^{2}\right)$ is constant and equal to ~ 1.
- The uncertainty in $R_{f_{2}^{\prime}}\left(q^{2}\right)$ is almost negligible.

New Physics 1D (bin wise)

- $D B R$: although the central values differ slightly from the SM, no significant observations can be made.
- F_{L} : very minute deviations are found in the some of the NP scenarios.
- $A_{F B}$: not more than 2σ deviations observed.
- P_{1} : no distinguished NP discussions can be made, although central values differ.
- P_{2} : all the NP scenarios although differ slightly from the SM central values but lie within the 1σ SM error band.
- $P_{4}^{\prime}: 1-3 \sigma$ deviations from SM are observed.
- P_{5}^{\prime} : all the NP central values in each NP coupling differ with respect to SM but lie within the $1 \sigma \mathrm{SM}$.

New Physics 1D (q^{2} distribution)

- The observables: $A_{F B}\left(q^{2}\right), P_{2}\left(q^{2}\right), P_{4}^{\prime}\left(q^{2}\right)$ and $P_{5}^{\prime}\left(q^{2}\right)$ make the zero crossings (ZC).
- The ZC point for $A_{F B}\left(q^{2}\right)$ in SM is at $q^{2} \sim 3$ GeV^{2} and the $C_{9}^{N P}$ is overlapping with the SM.
- The ZC for $C_{9}^{N P}=-C_{10}^{N P}$ is at ~ 3.4 GeV^{2} and for $C_{10}^{N P}$ and $C_{9}^{N P}=-C_{9}^{\prime}$ is at $\sim 3.8 \mathrm{GeV}^{2}$.
- The similar observations are made in the case of $P_{2}\left(q^{2}\right)$.
- For $P_{4}^{\prime}\left(q^{2}\right)$, the ZC for SM is found at $q^{2} \sim 1.4 \mathrm{GeV}^{2}$ and $C_{10}^{N P}$ is overlapping with SM. $C_{9}^{N P}$ and $C_{9}^{N P}=-C_{10}^{N P}$ at ~ 1.8 GeV^{2} and $C_{9}^{N P}=-C_{9}^{\prime}$ at $\sim 1 \mathrm{GeV}^{2}$.
- $P_{5}^{\prime}\left(q^{2}\right), \mathrm{ZC}$ for SM and the $C_{9}^{N P}$ is found at around $q^{2} \sim 1.6 \mathrm{GeV}^{2}$. For the $C_{9}^{N P}=-C_{10}^{N P}$ at $\sim 1.8 \mathrm{GeV}^{2}$ and for the $C_{10}^{N P}$ and $C_{9}^{N P}=-C_{9}^{\prime}$ at $\sim 2.2 \mathrm{GeV}^{2}$.

New Physics 2D (bin wise)

- $D B R$: quite more deviations from the SM expectation is observed.
- F_{L} : around $1-1.5 \sigma$ deviations found from the SM.
- $A_{F B}$: Not more than 2σ deviations observed.
- $\quad P_{1}$: there are slight variations in the central values, lie within the SM 1σ.
- P_{2} : except in $[0.045,0.98]$ and $[1.1,2.5]$, quite significant deviation of around $1.5-2.5 \sigma$ are found.
- P_{4}^{\prime} : around 2σ deviation found in $[0.045,0.98$] due to $\left(C_{9}^{N P}, C_{9}^{\prime}\right)$, other lie within the 1σ.
- P_{5}^{\prime} : central values differ in each NP scenarios but are consistant within the 1σ of the SM error bar.

New Physics 2D (q^{2} distribution)

- We do observe the interesting zero crossing (ZC) behaviors in the similar observables: $A_{F B}\left(q^{2}\right)$, $P_{2}\left(q^{2}\right), P_{4}^{\prime}\left(q^{2}\right)$ and $P_{5}^{\prime}\left(q^{2}\right)$.
- The ZC for $A_{F B}\left(q^{2}\right)$ is found at $q^{2} \sim 3.6$ GeV^{2} due to $\left(C_{9}^{N P}, C_{9}^{\prime}\right)$ and at $\sim 4 \mathrm{GeV}^{2}$ due to $\left(C_{9}^{N P}, C_{10}^{N P}\right)$ and $\left(C_{9}^{N P}, C_{10}^{\prime}\right)$.
- Similar observations are made in $P_{2}\left(q^{2}\right)$ as well.
- For $P_{4}^{\prime}\left(q^{2}\right), \mathrm{ZC}$ for $\mathrm{SM},\left(C_{9}^{N P}, C_{9}^{\prime}\right)$ and $\left(C_{9}^{N P}, C_{10}^{\prime}\right)$ are found at $q^{2} \sim 1.4 \mathrm{GeV}^{2}$ whereas, for $\left(C_{9}^{N P}, C_{10}^{N P}\right)$ at $\sim 1.2 \mathrm{GeV}^{2}$.
- In the case of $P_{5}^{\prime}\left(q^{2}\right)$, all the 2D NP scenarios exhibit distinct distribution from the SM. The ZC for all the scenarios approximately lie between $q^{2} \sim 2-2.2 \mathrm{GeV}^{2}$.
- All the values are found to be distinct from SM as well as 1D scenarios.

LFUV sensitivity in 1D (bin wise)

- Uncertainties are reduced in these observable.
- $R_{f_{2}^{\prime}}$: all the NP scenarios exhibit very distinct nature (with $>3 \sigma$ deviation).
- Q_{1} : interesting due to $C_{9}^{N P}=-C_{9}^{\prime}$ in the bins $[0.045,0.98]$ and $[1.1,2.5]$.
- Q_{2} : $[1.1,2.5]$ no major deviations, $>5 \sigma$ in [2.5, 4.0] and [4.0, 6.0] in some NP.
- $Q_{4}^{\prime}:>5 \sigma$ deviation in $[1.1,2.5],>3 \sigma$ deviation in $C_{9}^{N P}=-C_{9}^{\prime}$ in [4.0, 6.0].
- $Q_{5}^{\prime}: C_{10}^{N P}$ is SM like and other deviate $>5 \sigma$ in [1.1, 2.5]. Some deviations found due to all in the rest of the bins.
- $Q_{A_{F B}}$: in bins $[1.1,2.5]$ and $[2.5,4.0]>4 \sigma$ deviation except $C_{10}^{N P}$, in the last bin all deviate at $>1 \sigma$
- $Q_{F_{L}}: C_{10}^{N P}, C_{9}^{N P}=-C_{10}^{N P}$ similar to SM (2nd\& 3rd), major deviations in 1st and last.

LFUV sensitivity in 2D (bin wise)

- $R_{f_{2}^{\prime}}$: very significant deviations found in all the scenarios.
- $Q_{1}:$ In the bins [0.045, 0.98] and [1.1, 2.5], no deviations found due to $\left(C_{9}^{N P}, C_{10}^{N P}\right)$, $\left(C_{9}^{N P}, C_{10}^{\prime}\right)$ deviate at $>2 \sigma$.
- Q_{2} : No significant deviations found in the bin [1.1, 2.5], $>5 \sigma$ deviations found in the rest.
- Q_{4}^{\prime}, in $[1.1,2.5]$ all lie near 1σ, quite more deviations found in the rest.
- Q_{5}^{\prime} : we do observe significant deviations to some extent in all scenarios.
- $Q_{A_{F B}}:>3 \sigma$ deviations found in all the bins.
- $Q_{F_{L}}:>3 \sigma$ deviations found in all the bins.

Conclusion

- The branching ratio of $B_{s} \rightarrow f_{2}^{\prime} \mu^{+} \mu^{-}$of order of $\mathcal{O}\left(10^{-7}\right)$ in SM.
- The branching ratio is reduced at all q^{2} for most of NP cases.
- In all the cases except for $C_{9}^{N P}$, the zero crossing for $A_{F B}\left(q^{2}\right)$ is shifted to the higher q^{2} values.
- In the case of F_{L}, the peak seems to be reduced and shifted to the higher values of q^{2} in comparison to the SM.
- $R_{f_{2}^{\prime}}$ and Q 's observe significant deviations from SM in most of the NP scenarios.
- It is worth to mention that the zero crossing for $A_{F B}\left(q^{2}\right)$ is quite interesting and can be measured to check the LFUV.
- Measurements of various observables for this decay mode in future can shed more light to identify the possible NP.

Thank you for your patience.

