Nonperturbative calculations of form factors for exclusive semileptonic $B_{(s)}$ decays

> Oliver Witzel RBC-UKQCD collaborations

ICHEP 2020 · July 29, 2020

Nonperturbative calculations of form factors for exclusive semileptonic $B_{(s)}$ decays

in collaboration with J.M. Flynn, R.C. Hill, A. Jüttner, E. Lizarazo, A. Soni, J.T. Tsang

Motivation

Determine fundamental parameters of the Standard Model e.g. |V_{ub}|, |V_{cb}|, |V_{td}|, |V_{ts}|
 May address interesting observations or challenge the Standard Model

 \rightarrow e.g. test lepton flavor universality via $R(D^{(*)})$

 $B_S \rightarrow D_S \ell \nu$ 0000

Why B_s meson decays?

▶ Experimentally measured by LHCb e.g. [LHCb PRD 101 (2020) 072004]

- ▶ Alternative, tree-level determination of $|V_{cb}|$ and $|V_{ub}|$ from $B_s \rightarrow D_s \ell \nu$ and $B_s \rightarrow K \ell \nu$
 - ightarrow Cross-checking commonly used $B
 ightarrow \pi \ell \nu$ and $B
 ightarrow D^{(*)} \ell \nu$
 - \rightarrow Only spectator quark changes; flavor symmetry should hold very well
 - \rightarrow Longstanding 2 3 σ discrepancy between exclusive ($B \rightarrow \pi \ell \nu$) and inclusive ($B \rightarrow X_u \ell \nu$)
- Likely more precise than $B \rightarrow \tau \nu$

▶ Alternative, exclusive $(\Lambda_b \rightarrow p \ell \nu)$ determination [Detmold, Lehner, Meinel, PRD92 (2015) 034503]

▶ Strange-quarks are easier for nonperturbative lattice calculations

 $B_S \rightarrow D_S \ell \nu$ 0000

Lattice calculation

- \blacktriangleright Wick-rotate to Euclidean time $t \rightarrow i \tau$
- ▶ Discretize space-time and set up a hypercube of finite extent $L^3 \times T$ and spacing *a*
- Use path integral formalism

$$\langle \mathcal{O} \rangle_{\mathcal{E}} = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}] \, \mathcal{D}[U] \, \mathcal{O}[\psi, \overline{\psi}, U] \, e^{-S_{\mathcal{E}}[\psi, \overline{\psi}, U]}$$

- \Rightarrow Large but finite dimensional path integral
- Finite volume of length $L \rightarrow IR$ regulator
 - \rightarrow Study physics in a finite box of volume $(aL)^3$
 - \rightarrow Strongly prefer decays with 1 (QCD-stable) hadronic final state (narrow width approximation)
- \blacktriangleright Finite lattice spacing $\textbf{\textit{a}} \rightarrow \text{UV}$ regulator
 - \rightarrow Quark masses need to obey am < 1

 $B_S \rightarrow D_S \ell \nu$ 0000

Simulating charm and bottom (schematic)

 $a^{-1} > 1.5 \,\,\mathrm{GeV}$

charm: RHQ; extrapolations of fully relativistic actions (?) bottom: HQET, NRQCD, RHQ

 $a^{-1} > 2.2 \,\,\mathrm{GeV}$

charm: fully relativistic action bottom: (guided) extrapolation of fully relativistic action

 $a^{-1} > 4.6 \,\,\mathrm{GeV}$

bottom: fully relativistic action

HQET: static limit, relatively noisy NRQCD: non-relativistic QCD, no continuum limit RHQ or Fermilab: relativistic heavy quark action, complicated discretization errors (heavy) HISQ or (heavy) MDWF: fully relativistic, clean nonperturbative renormalization

introduction	$B_s \to K \ell \nu$	$B_s \rightarrow D_s \ell \nu$	summary
00000	0000000	0000	00

$|V_{ub}|$ from exclusive semileptonic $B_s \rightarrow K \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = \frac{\eta_{EW}G_F^2|V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2\sqrt{E_K^2 - M_K^2}}{q^4M_{B_s}^2}$$

experiment
$$\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_K^2 - M_K^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_K^2)^2 |f_0(q^2)|^2 \right]$$

nonperturbative input

Oliver Witzel (University of Colorado Boulder)

$\begin{array}{c} B_{\rm S} \rightarrow K\ell\nu \\ 0 @ 0 0 0 0 0 0 0 \end{array}$

 $B_S \rightarrow D_S \ell \nu$ 0000 summary 00

$|V_{ub}|$ from exclusive semileptonic $B_s ightarrow K \ell u$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

$$\begin{aligned} \frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} = & \frac{\eta_{EW}G_F^2|V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2\sqrt{E_K^2 - M_K^2}}{q^4 M_{B_s}^2} & \text{using lattice QCD} \\ & \text{experiment} & \text{CKM} & \text{known} \\ & \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_K^2 - M_K^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_K^2)^2 |f_0(q^2)|^2 \right] \end{aligned}$$

nonperturbative input

Oliver Witzel (University of Colorado Boulder)

▶ $f_+(q^2)$ and $f_0(q^2)$

- → Parametrizes interactions due to the (nonperturbative) strong force
- → Use operator product expansion (OPE) to identify short distance contributions
- → Calculate matrix element of the flavor changing currents as point-like operators using lattice QCD

 $B_S \rightarrow D_S \ell \nu$ 0000

$B_s \to K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

► Calculate 3-point function by

- \rightarrow Inserting a quark source for a strange quark propagator at t_0
- \rightarrow Allow it to propagate to t_{sink} , turn it into a sequential source for a b quark
- \rightarrow Propagate a light quark from t_0 and contract with b quark at t with $t_0 \leq t \leq t_{sink}$

 $B_S \rightarrow D_S \ell \nu$ 0000

$B_s \to K \ell \nu$ form factors

▶ Parametrize the hadronic matrix element for the flavor changing vector current V^{μ} in terms of the form factors $f_+(q^2)$ and $f_0(q^2)$

$$\langle K | V^{\mu} | B_s
angle = f_+(q^2) \left(p^{\mu}_{B_s} + p^{\mu}_K - rac{M^2_{B_s} - M^2_K}{q^2} q^{\mu}
ight) + f_0(q^2) rac{M^2_{B_s} - M^2_K}{q^2} q^{\mu}$$

- Prefer to compute
 - $f_{\parallel}(E_{K}) = \langle K | V^{0} | B_{s} \rangle / \sqrt{2M_{B_{s}}}$ and $f_{\perp}(E_{K}) p_{K}^{i} = \langle K | V^{i} | B_{s} \rangle / \sqrt{2M_{B_{s}}}$

which are directly proportional to 3-point functions

▶ Both are related by

$$f_{0}(q^{2}) = \frac{\sqrt{2M_{B_{s}}}}{M_{B_{s}}^{2} - M_{K}^{2}} \left[(M_{B_{s}} - E_{K}) f_{\parallel}(E_{K}) + (E_{K}^{2} - M_{K}^{2}) f_{\perp}(E_{K}) \right]$$
$$f_{+}(q^{2}) = \frac{1}{\sqrt{2M_{B_{s}}}} \left[f_{\parallel}(E_{K}) + (M_{B_{s}} - E_{K}) f_{\perp}(E_{K}) \right]$$

Oliver Witzel (University of Colorado Boulder)

$B_s \rightarrow K\ell\nu$ 000 \bullet 0000

 $B_S \rightarrow D_S \ell \nu$ 0000

$B_s \rightarrow K \ell \nu$ form factors: F1S ensemble

 \blacktriangleright Comparison of fit to the ground state only with fit including one excited state term for K and B_s

Updating [Flynn et al. PRD 91 (2015) 074510] adding third, finer lattice spacing, improved values for a⁻¹ and RHQ parameters
 f_{pole}(M_K, E_K, a²) = c₀Λ/E_K+Δ × [1 + δf/(4πf)² + c₁ M²/Λ² + c₂ E_K/Λ + c₃ E²/Λ² + c₄(aΛ)²]

▶ δf non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_K/E_K \rightarrow 0$ Oliver Witzel (University of Colorado Boulder) summarv

Estimate systematic errors due to

- Chiral-continuum extrapolation
 - \rightarrow Use alternative fit functions, vary pole mass, etc.
 - \rightarrow Impose different cuts on the data
- Discretization errors of light and heavy quarks
 - \rightarrow Estimate via power-counting
- Uncertainty of the renormalization factors
 - \rightarrow Estimate effect of higher loop corrections
- ▶ Finite volume, isospin breaking, ...
- Uncertainty due to RHQ parameters and lattice spacing (a^{-1})
 - \rightarrow Carry out additional simulations to test effects on form factors
- Uncertainty of strange quark mass
 - \rightarrow Repeat simulation with different valence quark mass

\Rightarrow full error budget

Error budget $B_s \rightarrow K \ell \nu$

 $\blacktriangleright \Delta f = \left| f^{\text{variation}} - f^{\text{central}} \right| / f^{\text{central}}$

Error budget $B_s \rightarrow K \ell \nu$

Kinematical extrapolation (*z*-expansion)

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

▶ Map complex q^2 plane with cut $q^2 > t_*$ onto the unit disk in z

$$z(q^2,t_*,t_0)=rac{\sqrt{t_*-q^2}-\sqrt{t_*-t_0}}{\sqrt{t_*-q^2}+\sqrt{t_*-t_0}}$$

with

$$egin{aligned} t_* &= \left(M_B + M_\pi
ight)^2 & (ext{two-particle production threshold}) \ t_\pm &= \left(M_{B_s} \pm M_K
ight)^2 & (ext{with } t_- = q_{max}^2) \ t_0 &\equiv t_{ ext{opt}} = t_* - \sqrt{t_*(t_* - t_-)} & (ext{symmetrize range of } z) \end{aligned}$$

 \blacktriangleright BCL express form factor f_+ for $B \to \pi \ell \nu$

$$f_+(q^2) = rac{1}{1-q^2/M_{pole}^2}\sum_{k=0}^{K-1}b_k^+(t_0)z^k$$

For other decays use product of factors for subthreshold poles for both f_+ and f_0 paralleling the Blaschke factors for a BGL fit to the same decay

$B_s \rightarrow K \ell \nu$

 $B_S \rightarrow D_S \ell \nu$ 0000

Kinematical extrapolation (*z*-expansion)

- Perform fit in z-space with K parameters
- Final Then convert back to physical q^2
- ▶ BCL with pole $M_+ = B^* = 5.33$ GeV for f_+
- Exploit kinematic constraint $f_+ = f_0 \Big|_{q^2=0}$
- ► Include HQ power counting to constrain size of f₊ coefficients (work in progress)

$B_s \rightarrow K \ell \nu$ 0000000

 $B_S \rightarrow D_S \ell \nu$ 0000

Kinematical extrapolation (z-expansion)

- ▶ Compare form factors to other determinations
 - \rightarrow FNAL MILC19 [Bazavov et al. arXiv:1901.02561]
 - \rightarrow HPQCD14 [Bouchard et al. PRD 90 (2014) 054506]
 - \rightarrow HPQCD18 [Monahan et al. PRD 98 (2014) 114509]
 - \rightarrow RBC UKQCD15 [Flynn et al. PRD 91 (2015) 074510]
 - \rightarrow ALPHA16 [Bahr et al. PLB757(2016)473]
 - → Analytic predictions at $q^2 = 0$ [Duplancic et al. PRD78 (2008) 054015] [Faustov et al. PRD87 (2013) 094028] [Wang et al. PRD86 (2012) 114025] [Khodjamirian et al. JHEP08 (2017) 112]

$B_{\rm S} \rightarrow K \ell \nu$

 $B_s \rightarrow D_s \ell \nu$ 0000

Kinematical extrapolation (z-expansion)

- Combination with experimental results gives $|V_{ub}|$
- ▶ Determine ratios to test lepton flavor universality
- Predict forward-backward asymmetries

. . .

 $B_s \rightarrow D_s \ell \nu$

introduction	$B_s \rightarrow K \ell \nu$	$B_S \rightarrow D_S \ell \nu$	summa
00000	0000000	0000	00

$|V_{cb}|$ from exclusive semileptonic $B_s \rightarrow D_s \ell \nu$ decay

• Conventionally parametrized by $(B_s \text{ meson at rest})$

Accommodate charm quarks

$$\begin{aligned} \frac{d\Gamma(B_s \to D_s \ell \nu)}{dq^2} &= \frac{\eta_{EW} G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_{D_s}^2 - M_{D_s}^2}}{q^4 M_{B_s}^2} \\ & \text{experiment} \quad \frac{\mathsf{CKM}}{\mathsf{known}} \\ & \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_{D_s}^2 - M_{D_s}^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_{D_s}^2)^2 |f_0(q^2)|^2 \right] \\ & \text{nonperturbative input} \end{aligned}$$

Oliver Witzel (University of Colorado Boulder)

1.3

Global fit
$$B_s
ightarrow D_s \ell
u$$

Oliver Witzel (University of Colorado Boulder)

$\begin{array}{c} B_{\rm S} \rightarrow K\ell\nu \\ 00000000 \end{array}$

 $B_S \rightarrow D_S \ell \nu$ 0000

PRELIMINARY error budget $B_s \rightarrow D_s \ell \nu$

$$\bullet \, \delta f = \left| f^{\text{variation}} - f^{\text{central}} \right| / f^{\text{central}}$$

$B_S \rightarrow K \ell \nu$

 $B_s \rightarrow D_s \ell \nu$ 000•

PRELIMINARY error budget $B_s \rightarrow D_s \ell \nu$

▶ "Other": 3% placeholder to cover higher order corrections, lattice spacing, finite volume, ...

 $B_s \rightarrow D_s \ell \nu$ 0000

Summary

- \blacktriangleright Calculation for $B_s
 ightarrow {\cal K} \ell
 u$ form factors essentially completed
 - \rightarrow Working on comparison to other determinations
 - \rightarrow Extracting phenomenologically interesting quantities

 \blacktriangleright Finalizing systematic error budget for $B_s \rightarrow D_s \ell \nu$ decays