

$B \rightarrow D^* \ell v$ form factors with a full angular analysis at **BABAR**

CHEP2020 Franco Simonetto

Motivations

- Many long standing issues in HF-Physics
- $|V_{cb}|$ determination:
 - from $b \rightarrow c \ell v \text{ decays}$:

$$|V_{cb}| = (42.19 \pm 0.78) \cdot 10^{-3^{averages}}$$

- from $B \rightarrow D^* \ell v$ decays: $|V_{cb}| = (38.76 \pm 0.42_{exp} \pm 0.55_{th}) \cdot 10^{-3}$
- New Physics arising from Form Factors ?

M.Rotondo

FPCP 2020

(HFLAV

A Game of Roles

- Theory-experiments interplay
- Theory:
 - convert from ideal quark world
 - to the observed hadron reality
- Experiments
 - compute rates, Br
 - constrain theory prediction through measurements of spectra, differential rates, Form Factors

A Game of Roles

- Theory-experiments interplay
- Theory:
 - convert from ideal quark world
 - to the observed hadron reality
- Experiments
 - compute rates, Br
 - constrain theory prediction through measurements of spectra, differential rates, Form Factors

THIS TALK

CHEP2020 Franco Simonetto

$B \rightarrow D^* \ell v$ in a nutshell

$$\frac{d\Gamma}{dq^2 d\Omega} = \frac{G_F^2 m_B^5}{48 \pi^3} |V_{cb}|^2 \eta_{EW} P(q^2, \Omega) \times F.F.(q^2, \Omega)$$

- 3 form factors (one Vector, two Axial Vector)
 - measured through 4D fit to

•
$$q^2 = (p_B - p_{D^*})^2 = (p_v + p_t)^2 = t$$

• helicity angles $\Omega = (\theta_t, \theta_{V,\chi})$

- limited data size, need input (shapes) from theory

Form Factors

$$q^{2} \rightarrow \omega = \frac{m_{B}^{2} + m_{D^{*}}^{2} - q^{2}}{2m_{B}m_{D^{*}}} \rightarrow z = \frac{\sqrt{\omega + 1} - \sqrt{2}}{\sqrt{\omega + 1} + \sqrt{2}}$$
 1<\alpha<1.53
0

ICHEP2020 Franco Simonetto

Form Factors a la BGL

$$q^{2} \rightarrow \omega = \frac{m_{B}^{2} + m_{D^{*}}^{2} - q^{2}}{2m_{B}m_{D^{*}}} \rightarrow z = \frac{\sqrt{\omega + 1} - \sqrt{2}}{\sqrt{\omega + 1} + \sqrt{2}}$$

 $1 < \omega < 1.53$
 $0 < z < 0.23$

- Boyd Grinstein Lebed :
 - power series expansion with minimal theoretical assumptions

$$F_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^N a_{i,n} z^n$$

 $a_{i,n}$ free (fit) parameters subject to the analicity bound:

$$\sum_{n=0}^{\infty} a_i, n^2 \leq 1$$

[PRL 74,4603 (1995)]

Form Factors a la BGL

$$q^{2} \rightarrow \omega = \frac{m_{B}^{2} + m_{D^{*}}^{2} - q^{2}}{2m_{B}m_{D^{*}}} \rightarrow z = \frac{\sqrt{\omega + 1} - \sqrt{2}}{\sqrt{\omega + 1} + \sqrt{2}}$$

 $1 < \omega < 1.53$
 $0 < z < 0.23$

- Boyd Grinstein Lelouch :
 - power series expansion with minimal theoretical assumptions

$$F_{i}(z) = \frac{1}{P_{i}(z)\phi_{i}(z)} \sum_{n=0}^{N} a_{i,n} z^{n}$$
Stop at N=1 due to
statistical limitations

 $a_{i,n}$ free (fit) parameters subject to the analicity bound:

$$\sum_{n=0}^{\infty} a_i, n^2 \leq 1$$

[PRL 74,4603 (1995)]

Form Factors a la CLN

$$q^{2} \rightarrow \omega = \frac{m_{B}^{2} + m_{D^{*}}^{2} - q^{2}}{2m_{B}m_{D^{*}}} \rightarrow z = \frac{\sqrt{\omega + 1} - \sqrt{2}}{\sqrt{\omega + 1} + \sqrt{2}}$$

 $1 < \omega < 1.53$
 $0 < z < 0.23$

- Caprini Lellouch Neubert:
 - use HQET bounds to reduce the number of free parameters $h_{A1}(\omega) = h_{A1}(1) [1 - 8\rho^{2}z + (53\rho^{2} - 15)z^{2} - (231\rho^{2} - 91)z^{3}] \qquad \text{"Universal} \\ \text{IsgurWise} \\ \text{function"} \\ R_{2}(\omega) = R_{2}(1) + 0.11(\omega - 1) - 0.06(\omega - 1)^{2} \\ R_{1}(\omega) = R_{1}(1) - 0.12(\omega - 1) + 0.05(\omega - 1)^{2} \\ \text{Lattice QCD:} \qquad \text{Note: Integration of the set of th$
 - $h_{A1}(1) = 0.895 + 0.026 / 0.906 + 0.013$

[Nucl.Phys. B530, 153(1998)]

Form Factors a la CLN

$$q^{2} \rightarrow \omega = \frac{m_{B}^{2} + m_{D^{*}}^{2} - q^{2}}{2m_{B}m_{D^{*}}} \rightarrow z = \frac{\sqrt{\omega + 1} - \sqrt{2}}{\sqrt{\omega + 1} + \sqrt{2}}$$

 $1 < \omega < 1.53$
 $0 < z < 0.23$

- Caprini Lellouch Neubert:
 - use HQET bounds to reduce the number of free parameters $h_{A1}(\omega) = h_{A1}(1)[1-8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3]$ "Universal IsgurWisefunction" $R_2(\omega) = R_2(1) + 0.11(\omega - 1) - 0.06(\omega - 1)^2$ $R_1(\omega) = R_1(1) - 0.12(\omega - 1) + 0.05(\omega - 1)^2$ Lattice QCD : $h_{A1}(1) = 0.895 + 0.026/0.906 + 0.013$ Fit one shape and two normalization parameters [Nucl.Phys. B530, 153(1998)]

"Old" approach:

- Select "untagged" sample
 - Large data sets
 - Sizable background
 - Coarse resolution due to

missing neutrino

The measurements

- Select "untagged" sample
 - Large data sets
 - Sizable background
 - Coarse resolution due to missing neutrino
 - Fit to 1D projections

This talk:

- Exploit "tagged" events
 - Smaller data set
 - Negligible background
 - Terrific resolution due to kinematic bounds
 - Full fit to 4D space

Tagged Analysis

- Tag side
 - fully reconstructed hadronic B decay
 - loose selection: high efficiency /low purity
- Signal side:
 - $\mathbf{B}^{0/+} \longrightarrow \mathbf{D}^{* + / 0} \ \mathbf{\ell} \mathbf{V}$
 - $\mathbf{D}^{*+/0} \longrightarrow \pi^{+/0} \mathbf{D}^0$,
 - $D^0 \rightarrow K\pi$, $K\pi^+\pi^-$, $K3\pi$

Over-constrained system:

-
$$U = E_{miss} - p_{miss}$$
 (missing neutrino)

Over-constrained system:

-
$$U = E_{miss} - p_{miss}$$
 (missing neutrino)

- Confidence Level

• Over-constrained system:

-
$$U = E_{miss} - p_{miss}$$
 (missing neutrino)

- Confidence Level

Background < 3%

- Extra energy carried by low energy photons

- 1) Not-extended Unbinned Maximum Likelihood
 - Measure F.F. parameters only
- 2) Extended UML to measure in addition $|V_{cb}|$
 - Integrated rate constrained to the WA values of the ratios

$$\int \frac{d\Gamma}{dq^2 d\Omega} dq^2 d\Omega = \frac{\operatorname{Br}(B \to D^* l v_l)}{\tau(B)}$$

Fit Quality

Results

BGL

CLN

$a_0^f \times 10^2$	$a_1^f \times 10^2$	$a_1^{F_1} \times 10^2$	$a_0^g \times 10^2$	$a_1^g \times 10^2$	$ V_{cb} \times 10^3$
1.29 ±0.03	$\begin{array}{c} 1.63 \\ \pm 1.00 \end{array}$	0.03 ±0.11	2.74 ±0.11	$\begin{array}{c} 8.33 \\ \pm 6.67 \end{array}$	$\begin{array}{c} 38.36 \\ \pm 0.90 \end{array}$
$ ho_{D^*}^2$		$R_1(1)$	$R_2(1$.)	$ V_{cb} \times 10^3$
0.96 ± 0.0	08 1.2	29 ± 0.04	$0.99 \pm$	0.04	38.40 ± 0.84

 $\ensuremath{\mathsf{BGL}}$ and $\ensuremath{\mathsf{CLN}}$ provide consistent shapes

CLN fit NOT CONSISTENT with CLNWA (HFLAV) :

$$p = 0.17 \%$$

CHEP2020 Franco Simonetto

Conclusions

- New approach paves the way for future measurements of $|V_{\rm cb}|$ and FF
 - negligible background
 - excellent resolution
- Shape of FF is at odds with previous measurements
- This does not seem to explain the inclusive/exclusive puzzle
- Huge data set from Super-B-factory Belle2 will allow to:
 - solve present contradictions (hopefully)
 - release theory constraints for a less-model-dependent determination

Partial Decay Width

$$\begin{split} \frac{d\Gamma}{dq^2 d\Omega} &= [(H_+^2 (1 - \cos \theta_\ell)^2 + H_-^2 (1 + \cos \theta_\ell)^2) \sin^2 \theta_V \\ &+ 2H_0 \sin \theta_\ell \sin 2\theta_V \cos \chi [H_+ (1 - \cos \theta_\ell) \\ &- H_- (1 + \cos \theta_\ell)] + 4H_0^2 \sin^2 \theta_\ell \cos^2 \theta_V \\ &- 2H_+ H_- \sin^2 \theta_\ell \sin^2 \theta_V \cos 2\chi] \\ &\times \frac{3}{8(4\pi)^4} G_F^2 \eta_{\rm EW}^2 |V_{cb}|^2 \frac{kq^2}{m_B^2} \mathcal{B}(D^* \to D\pi), \end{split}$$

$\overline{ ho_{D^*}^2}$	$R_1(1)$	$R_{2}(1)$	$ V_{cb} \times 10^3$
0.96 ± 0.08	1.29 ± 0.04	0.99 ± 0.04	38.40 ± 0.84
$1.122 \pm 0.015 \pm 0.019$	1.27 ± 0.026	0.85 ± 0.02	$38.76 \pm 0.42_{exp} \pm 0.55_{exp}$

