$\mathrm{B}^{\prime} \rightarrow \mathrm{D}^{*}$ थv form factors with a full angular analysis

at BABAR

- Many long - standing issues in HF-Physics
- $\left|V_{\text {I }}\right|$ determination. M.Rotondo

FPCP 2020
(HFLAV

- from $\boldsymbol{b} \rightarrow \boldsymbol{c} \boldsymbol{\mathcal { V }} \boldsymbol{v}$ decays : $\quad\left|V_{c b}\right|=(42.19 \pm 0.78) \cdot 10^{\left.-3^{\text {averages }}\right)}$
- from $\boldsymbol{B} \rightarrow \boldsymbol{D} * \boldsymbol{\mathscr { v }}$ decays: $\quad\left|V_{c b}\right|=\left(38.76 \pm 0.42_{\text {exp }} \pm 0.55_{\text {th }}\right) \cdot 10^{-3}$
- New Physics arising from Form Factors?

A Game of Roles

- Theory-experíments interplay
- Theory:
- convert from ideal quark world
- to the observed hadron reality
- Experíments
- compute rates, $B r$

- constrain theory prediction through measurements of spectra, differential rates, Form Factors

A Game of Roles

- Theory-experíments interplay
- Theory:
- convert from ideal quark world
- to the observed hadron reality
- Experíments
- compute rates, $B r$

- constrain theory prediction through measurements of spectra, differential rates, Form Factors

THIS TALK

$B \rightarrow D^{*} \mathscr{C}_{v}$ in a nutshell

$$
\frac{d \Gamma}{d q^{2} d \Omega}=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{3}}\left|V_{c b}\right|^{2} \eta_{E W} P\left(q^{2}, \Omega\right) \times F . F \cdot\left(q^{2}, \Omega\right)
$$

- 3 form factors (one Vector, two Axial Vector)
- measured through 4D fit to
- $q^{2}=\left(p_{B}-p_{D}\right)^{2}=\left(p_{v}+p_{t}\right)^{2}=t$
- helicity angles $\Omega=\left(\boldsymbol{\theta}_{t}, \theta_{V}, \chi\right)$
- limited data size, need input (shapes) from theory

$$
q^{2} \rightarrow \omega=\frac{m_{B}^{2}+m_{\mathrm{D}^{*}}^{2}-q^{2}}{2 m_{B} m_{\mathrm{D}^{*}}} \rightarrow z=\frac{\sqrt{\omega+1}-\sqrt{2}}{\sqrt{\omega+1}+\sqrt{2}} \quad \begin{array}{ll}
1<\omega<1.53 \\
0<z<0.23
\end{array}
$$

$$
\begin{aligned}
& q^{2} \rightarrow \omega=\frac{m_{B}^{2}+m_{\mathrm{D}^{*}}^{2}-q}{2 m_{B} m_{\mathrm{D}^{*}}} \\
& \text { Grinsteín Lebed: }
\end{aligned}
$$

- power series expansion with minimal theoretical assumptions

$$
F_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \Sigma_{n=0}^{N} a_{i, n} z^{n}
$$

$a_{i, n}$ free (fit) parameters subject to the analicity bound:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{i}, n^{2} \leq 1 \tag{1995}
\end{equation*}
$$

$$
q^{2} \rightarrow \omega=\frac{m_{B}^{2}+m_{\mathrm{D}^{*}}^{2}-q^{2}}{2 m_{B} m_{\mathrm{D}^{*}}} \rightarrow z=\frac{\sqrt{\omega+1}-\sqrt{2}}{\sqrt{\omega+1}+\sqrt{2}} \quad \begin{aligned}
& 1<\omega<1.53 \\
& 0<z<0.23
\end{aligned}
$$

- Boyd Grinstein Lelouch :
- power series expansion with minimal theoretical assumptions

$$
F_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{n=0}^{N} a_{i, n} z^{n}
$$

Stop at $N=1$ due to statistical limitations

$a_{i, n}$ free (fit) parameters subject to the analicity bound:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{i}, n^{2} \leq 1 \tag{1995}
\end{equation*}
$$

Form Factors a la CLN

$$
q^{2} \rightarrow \omega=\frac{m_{B}^{2}+m_{\mathrm{D}^{*}}^{2}-q^{2}}{2 m_{B} m_{\mathrm{D}^{*}}} \rightarrow z=\frac{\sqrt{\omega+1}-\sqrt{2}}{\sqrt{\omega+1}+\sqrt{2}} \quad \begin{array}{ll}
1<\omega<1.53 \\
0<z<0.23
\end{array}
$$

- Caprini Lellouch Neubert:
- use HQF T bounds to reduce the number of free parameters

$$
\begin{aligned}
h_{A 1}(\omega) & =h_{A 1}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right] \\
R_{2}(\omega) & =R_{2}(1)+0.11(\omega-1)-0.06(\omega-1)^{2}
\end{aligned}
$$

$$
R_{1}(\omega)=R_{1}(1)-0.12(\omega-1)+0.05(\omega-1)^{2}
$$

Lattice QCD :

$$
\mathrm{h}_{\mathrm{A} 1}(1)=0.895+-0.026 / 0.906+-0.013
$$

"Universal IsgurWise function"

Ratios of FF wrt h(w)

Form Factors a la CLN

$$
q^{2} \rightarrow \omega=\frac{m_{B}^{2}+m_{\mathrm{D}^{*}}^{2}-q^{2}}{2 m_{B} m_{\mathrm{D}^{*}}} \rightarrow z=\frac{\sqrt{\omega+1}-\sqrt{2}}{\sqrt{\omega+1}+\sqrt{2}} \quad \begin{array}{ll}
1<\omega<1.53 \\
0<z<0.23
\end{array}
$$

- Caprini Lellouch Neubert:
- use HQFT bounds to reduce the number of free parameters

$$
h_{A 1}(\omega)=h_{A 1}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right] \begin{aligned}
& \text { "Universal } \\
& \begin{array}{l}
\text { IsgurWise } \\
\text { function" }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& R_{2}(\omega)=R_{2}(1)+0.11(\omega-1)-0.06(\omega-1)^{2} \\
& R_{1}(\omega)=R_{1}(1)-0.12(\omega-1)+0.05(\omega-1)^{2}
\end{aligned}
$$

Fit one shape and two normalization parameters
Lattice QCD :
$h_{\mathrm{A} 1}(1)=0.895+-0.026 / 0.906+-0.013$
"Old" approach:

- Select "untagged" sample
- Large data sets
- Sizable background
- Coarse resolution due to
missíng neutríno
- Fitto 1D projections

The measurements

"Old" approach:

- Select "untagged" sample
- Large data sets
- Sizable background
- Coarse resolution due to míssing neutríno
- Fit to 1D projections

This talk:

- Exploit "tagged" events
- Smaller data set
- Negligible background
- Terrific resolution due to kinematic bounds
- Full fit to 4D space

Tagged Analysis

- Tagside
- fully reconstructed hadronic B decay

$$
\Upsilon(4 S) \rightarrow B_{t a g} B_{s i g}\left(\rightarrow D^{*} \ell \nu_{\ell}\right)
$$

- loose selection: high efficiency/low purity
- Signal side:

$$
-\mathbf{B}^{0 /+} \rightarrow \mathbf{D}^{++10} \mathscr{e}_{\mathbf{V}}
$$

- $\mathbf{D}^{++/ 0} \longrightarrow \boldsymbol{\pi}^{+/ 0} \mathbf{D}^{0}$,
$-\mathbf{D}^{0} \rightarrow \mathbf{K} \pi, K \pi^{+} \pi^{-}, \mathrm{K} 3 \pi$

Selection

- Over-constrained system:
- $U=E_{\text {miss }}-p_{\text {miss }}$ (missing neutrino)

Selection

- Over-constrained system:
- $U=E_{\text {miss }}$ - $P_{\text {miss }}$ (missing neutrino)
- Confidence Level

Selection

- Over-constrained system:
- $U=E_{\text {miss }}$ - $P_{\text {miss }}$ (missing neutrino)
- Confidence Level

Background < 3\%

- Extra energy carried by low energy photons

Fits

1) Not-extended Unbínned Maximum Likelihood

- Measure F.F. parameters only

2) Extended $U M L$ to measure in addition $\left|V_{c b}\right|$

- Integrated rate constrained to the WA values of the ratios

$$
\int \frac{d \Gamma}{d q^{2} d \Omega} d q^{2} d \Omega=\frac{\operatorname{Br}\left(B \rightarrow D^{*} l v_{l}\right)}{\tau(B)}
$$

$$
\frac{\chi^{2}}{n b i n s}=\frac{103}{100}
$$

$\frac{\chi^{2}}{n b i n s}=\frac{89}{100}$
(C)

$\frac{\chi^{2}}{\text { nbins }}=\frac{96}{100}$

BGL

$a_{0}^{f} \times 10^{2}$	$a_{1}^{f} \times 10^{2}$	$a_{1}^{F_{1}} \times 10^{2}$	$a_{0}^{g} \times 10^{2}$	$a_{1}^{g} \times 10^{2}$	$\left\|V_{c b}\right\| \times 10^{3}$
1.29	1.63	0.03	2.74	8.33	38.36
± 0.03	± 1.00	± 0.11	± 0.11	± 6.67	± 0.90
$\rho_{D^{*}}^{2}$	$R_{1}(1)$	$R_{2}(1)$	$\left\|V_{c b}\right\| \times 10^{3}$		
0.96 ± 0.08	1.29 ± 0.04	0.99 ± 0.04	38.40 ± 0.84		

BGL and CLN provide consistent shapes
CLN fit NOT CONSISTENT with CLNWA (HFLAV) :

$$
p=0.17 \%
$$

Conclusions

- New approach paves the way for future measurements of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and FF
- negligible background
- excellent resolution
- Shape of FF is at odds with previous measurements
- This does not seem to explaín the ínclusive/exclusive puzzle
- Huge data set from Super-B-factory Belle2 will allow to:
- solve present contradictions (hopefully)
- release theory constraints for a less-model-dependent determínation

Backup

Partial Decay Width

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2} d \Omega}= & {\left[\left(H_{+}^{2}\left(1-\cos \theta_{\ell}\right)^{2}+H_{-}^{2}\left(1+\cos \theta_{\ell}\right)^{2}\right) \sin ^{2} \theta_{V}\right.} \\
& +2 H_{0} \sin \theta_{\ell} \sin 2 \theta_{V} \cos \chi\left[H_{+}\left(1-\cos \theta_{\ell}\right)\right. \\
& \left.-H_{-}\left(1+\cos \theta_{\ell}\right)\right]+4 H_{0}^{2} \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{V} \\
& \left.-2 H_{+} H_{-} \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{V} \cos 2 \chi\right] \\
& \times \frac{3}{8(4 \pi)^{4}} G_{F}^{2} \eta_{\mathrm{EW}}^{2}\left|V_{c b}\right|^{2} \frac{k q^{2}}{m_{B}^{2}} \mathcal{B}\left(D^{*} \rightarrow D \pi\right), \\
H_{0}= & \frac{1}{2 m_{D^{*}} \sqrt{q^{2}}}\left(\left(m_{B}^{2}-m_{D^{*}}^{2}-q^{2}\right)\left(m_{B}+m_{D^{*}}\right) A_{1}\left(q^{2}\right)\right. \\
& \left.-\frac{4 m_{B}^{2} k^{2}}{m_{B}+m_{D^{*}}} A_{2}\left(q^{2}\right)\right), \\
H_{ \pm}= & \left(m_{B}+m_{D^{*}}\right) A_{1}\left(q^{2}\right) \mp \frac{2 m_{B} k}{\left(m_{B}+m_{D^{*}}\right)} V\left(q^{2}\right),
\end{aligned}
$$

$\rho_{D^{*}}^{2}$	$R_{1}(1)$	$R_{2}(1)$	$\left\|V_{c b}\right\| \times 10^{3}$
0.96 ± 0.08	1.29 ± 0.04	0.99 ± 0.04	38.40 ± 0.84
$1.122 \pm 0.015 \pm 0.019$	1.27 ± 0.026	0.85 ± 0.02	$38.76 \pm 0.42_{\text {exp }} \pm 0.55_{t h}$

