[More] Treasures from Kaons

Amarjit Soni HET@BNL
ICHEP 2020
07/28/20

Outline

- Unforgetable Memories!
- Exciting history
- Bagged 2 Nobels for BNL!
- Magics of -QM-mixings-K0
- A very important consequence of the QM mixing: K_LONG....
- Another important consequence of $\Delta \mathrm{mk}=>$ K-mixing, BSM vs SM
- Lattice $B K=\mathscr{E}$ Epsilon_K $=>$ precision constraints on the modern day UT fit

outline

- Basics of Direct CP in K=> $\pi \pi$ i.e. ε^{\prime}
- Early attempt(s), hurdles \& resolution
- I. Breakthrough: Domain wall \& chiral symmetric formulation
- II. Another key development: Lellouch-Luscher method
- $1^{\text {st }}$ completion ~ 2015 \& indication of difficulty

- Improved stats \& systematic=> new result
- some implications
- Summary + Outlook

$\Delta m K^{\text {expt }}$ vs $\Delta \mathrm{mK}^{\text {theory }}$

II $K^{0}-\overline{K_{0}}$ Mixing, D_{e} cay, Indinect CPviol athom

2 States K_{L}, K_{S} If CPiseract $s \quad \begin{array}{ll}d S=2 \\ O\left(G_{F}^{2}\right)\end{array}$

III Indirect CPristation
BN 1964 Fitch, $\mathrm{Crmmim}_{\text {m }}$, Chisitherent Turkey

$$
\begin{aligned}
& \begin{array}{ll}
\text { NOBLE } \\
\text { CRONIN } & A\left(k_{t} \rightarrow n_{\pi}\right) \\
A\left(k_{s} \rightarrow \pi i n\right)
\end{array} 0! \\
& e \vec{k}^{N 2} 2.23 \times 10^{-3} \\
& \text { kt } \xi\left\{\sum_{K^{0}} \text { CPV instate mixing, } \Delta E=2 \mathrm{Heff}\right.
\end{aligned}
$$

$\Delta \mathrm{mK}$: a powerful constraint on BSM

$$
\operatorname{In} S m \Delta S=2 \frac{s}{\frac{w \xi}{} \sum_{j} w^{d}+\cdots}+\cdots
$$

an explcitillustnation: LRSM Beall + Bander tAS PRL 1982

$$
\begin{aligned}
& W_{S M} \xrightarrow{3 \xi \xi} *_{W_{L R}} \quad\left(\frac{\Delta m_{k}}{m_{k}}\right)^{e_{x p t}} \stackrel{10^{-14!!}!}{\approx} \\
& \Rightarrow m_{R} \geqslant_{N} 1.6 \mathrm{~T}_{\mathrm{E}} V \\
& \Rightarrow \text { Kovor } \mathrm{Cr} \text { puzzdis of } B S M_{s}
\end{aligned}
$$

MR > ~20 MW

- An interesting tale of 4 factor of a few all going in one direction to render MR larger than MW.
- Starting point is the simple observation that. LXR is NOT Fierz invariant unlike SM LXL
- Indeed, LXL =-2 [S+P]X[S-P] whereas for SM, LXL = LXL
- Thus M_LR => Const as mq=>0 whereas M_LL i.e. SM =>0 as m_q => 0 with naïve factorization MLR ~ (05) X SM
- Soon one realizes there are another 3 factors of $O(2)$ all causing enhancement including NLO QCD.
- Very soon these factors pile up to $\mathbf{O}(20)$

Outstanding Th.puzzles of our times

- Hierarchy puzzle

- Flavor puzzle Δf lava $=2$ e.g.

The Randall-Sundrum (RS) idea

PHYSICAL REVIEW D 71, 016002 (2005)

Flavor structure of warped extra dimension models

Kaustubh Agashe*
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218-2686, USA

Gilad Perez ${ }^{\dagger}$

Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Amarjit Son ${ }^{\ddagger}$

High Energy Theory Group, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 14 September 2004; published 6 January 2005)

We recently showed that warped extra-dimensional models with bulk custodial symmetry and few TeV Kaluza-Klein (KK) masses lead to striking signals at B factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B physics. We also briefly study other new physics signatures that arise in rare K decays ($K \rightarrow \pi \nu \nu$), in rare top decays $[t \rightarrow c \gamma(Z$, gluon $)]$, and the possibility of $C P$ asymmetries in D^{0} decays to $C P$ eigenstates such as $K_{S} \pi^{0}$ and others. Finally we demonstrate that with light KK masses, $\sim 3 \mathrm{TeV}$, the above class of models with anarchic 5D Yukawas has a " $C P$ problem" since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extradimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal.

DOI: 10.1103/PhysRevD.71.016002

Inkothcoses as in Susy-like 9 Most BSD, the LXL of SM $\Delta S=2$

Physisic letters B 665 (2008) 67-71

The little Randall-Sundrum model at the large hadron collider Hooman Davoudiasl ${ }^{\text {a,* }}$, Gilead Perez ${ }^{\text {b }}$, Amarjit Toni ${ }^{\text {a }}$

"RS

${ }^{2}$ Department of Physics, Brookhaven Nations Laboratory, Upton, NY 11973, USA
CN. Yong Institute for Theoretical Physic, Stet Chivesity of New York, Stony Brook, NY 11794-3840, USA

ARTICLE info
Article history:
Received 3 April 2008
Accepted 13 May 2008
Available online 16 May
Editor: B. Grinstein

ABSTRACT
We present a predictive warped model of flavor that is cut off at an ultraviolet scale $\mathcal{O}\left(10^{3}\right) \mathrm{TeV}$. This "Little Randall-Sundrum (LRS)" model is a volume-truncation, by a factor $y \approx 6$, of the RS scenario and is holographically dual to dynamics with number of colors larger by y. The LRS couplings between KaluzaKlein states and the Standard Model fields, including the proton constituents, are explicitly calculable without ad hoc assumptions. Assuming separate gauge and flavor dynamics, a number of unwanted contributions to precision electroweak, ZED and favor observables are suppressed in we LR in e corresponding PS case. An important consequence of the IRS truncation independent of precise details, is a significant enhancement of the clean (golden) di-lepton LHC signals, by $\mathcal{O}\left(y^{3}\right)$,due
to a larger " ρ-photon" mixing and a smaller inter-composite coupling.
© 2008 Elsevier B.V. All rights reserved

Little Randall-Sundrum models: ϵ_{K} strikes again
M. Bauer, S. Casagrande, L. Gründer, U. Haisch and M. Neubert Institut fur Physik (THEP), Johannes Gutenberg-Universität, D-55099 Mainz, Germany (Dated: November 22, 2008)
A detailed phenomenological analysis of neutral kaon mixing in "little Randall-Sundrum" models is presented. It is shown that the constraints arising from the CP-violating quantity ϵ_{K} can, depending on the value of the ultra-violet cutoff, be even stronger than in the original Randall-Sundrum scenario add res $10^{3} \mathrm{TeV}$ is derived, below which vast corrections to ck are explained and a bound $\mathrm{K} \cup \mathrm{V}>$ several 10 MeV is derived, below which vast corrections to $c K$ are generically unavoidable. Implications for non-standard $Z^{0} \rightarrow b b$ couplings are briefly discussed.
becomes $L X R^{\prime}$ - like as in LRSmooleargito en hared ME fa- \bar{K}
\qquad

II. $\mathrm{K}=>\pi \pi, \Delta I=1 / 2$ Rule \& ε^{\prime}

Delta $I=1 / 2$ rule (puzzle): a challenge for $\quad I=0,2$ generations

BSM-CP: Theoretical motivation

- Since CP violation was experimentally seen in 1964, this means CP is NOT a symmetry of nature.
- Therefore, we cannot set the CP-odd phase(s) naturally to zero.
- BSMs are naturally endowed with CP-odd phases.
- Since epsilon' is a lot smaller than even eps, it should be extremely sensitive to the new phase(s).
- This naturalness based argument is a compelling argument for us to try understand esp' quantitatively as precisely as possible.
- Moreover, SM cannot account for baryogenesis.....CKM CP not enough
- Due to all of the above (and some more) reasons searching for BSM CPphase(s) is just about the most powerful way to look for NP.....an early realization \& a driving force for pursuing eps' for past few decades

$$
\begin{aligned}
& K \rightarrow 2 \pi \\
& \operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA_{2}}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right] .\right\} \\
& \text { Use lattice to calculate } 6 \text { quantities: } \\
& \text { ReA0, ReA2 known from expt; } \delta 0, \delta 2 \text { via } \\
& \text { ChPT etc. .So very good checks; } \\
& \omega \equiv R_{2} A_{2} / R_{e} A_{0} \\
& \text { r0.045. }|\epsilon|=2.228(11) \times 10^{-3} \text {, }
\end{aligned}
$$

A.S. in Proceedings of Lattice ' 85 (FSU).. $1^{\text {st }}$ Lattice meeting ever attended

The matrix elements of some penguin operators control in the standard model another CP violation parameter, namely ℓ^{\prime} / ℓ.

Indeed efforts are now undervay for an improved measurement of this important paraneter. ${ }^{101}$ In the absence of a reliable calculation for
 these paraneters, the experimental measurements, often achieved at
tremendous effort, cannot be used effectively for constraining the
theory. It is therefore clearly important to see how far one can go
with $\mathbb{M C}$ techniques in alleviating this old but very difficult

With C. Bernard

 [UCLA]Lattice calculations for more economical use of almost all experimental data From IF

MOTHER of all (lattice) calculations to date:

A Personal Perspective

- Calculation $K=>\pi \pi \& \varepsilon^{\prime}$ were the reasons I went into lattice over $1 / 3$ of a century ago!
- 9 + (3 new) PhD thesis: Terry Draper (UCLA'84), George Hockney(UCLA'86), Cristian Calin (Columbia=Cy 01), Jack Laiho(Princeton’04), Sam Li(CU’06), Matthey Lightman(CU'09), Elaine Goode(Southampton'10), Qi Liu(CU'12), Daiqian Zhang(CU'15)+ [new ones starting from CU, U Conn and Southampton] + many PD's \& junior facs.. obstacles \& challenges (and of course "mistakes"!) ad infinitum.....

EXTREMELY valuable inputs from countless:

- Fred Gilman and Mark Wise
- Andrzej Buras et al
- Guido Martinelli et al
- Yigal Shamir
- Laurent Lellouch + Martin Luscher
-
........
........

Basic calculational framework

$$
\begin{aligned}
& \Delta S=1 H_{w} \\
& \text { WLeNLO } \\
& \text { Buchalla, Buos, luatanculare Chiminit } \\
& \left.m_{i}=\langle k| Q_{i}|\pi|\right\rangle{ }_{N} \text { Neded } \\
& \tau=-V_{t s}^{*} V_{t d} / V_{u s i s}^{*} V_{u d .} \\
& \text { toall öders in ás }
\end{aligned}
$$

Fon Smpliciaty: IA Srattyy vic ClipT

VOLUME 32, NUMBER 9

1 NOVEMBER 1985

Application of chiral perturbation theory to $K \rightarrow 2 \pi$ decays

1) Claude Bernard, Terrence Draper,* and A. Soni
H. David Politzer and Mark B. Wise

Department of Physics, California Institute of Technology, Pasadena, California 91125
(Received 3 December 1984)
Chiral perturbation theory is applied to the decay $K \rightarrow 2 \pi$. It is shown that, to quadratic order in meson masses, the amplitude for $K \rightarrow 2 \pi$ can be written in terms of the unphysical amplitudes $K \rightarrow \pi$ and $K \rightarrow 0$, where 0 is the vacuum. One may then hope to calculate these two simpler amplitudes with lattice Monte Carlo techniques, and thereby gain understanding of the $\Delta I=\frac{1}{2}$ rule in K decay. The reason for the presence of the $K \rightarrow 0$ amplitude is explained: it serves to cancel off unwanted renormalization contributions to $K \rightarrow \pi$. We make a rough test of the practicability of these ideas in Monte Carlo studies. We also describe a method for evaluating meson decay constants which does not require a determination of the quark masses.

A key point to emphasize is that overcoming each major obstacle led to significant application to phenomenology and/or lattice
[necessity is the parent of.......]

Lattice computation of the decay constants of B and D mesons	Semileptonic decays on the lattice: The exclusive 0^{-}to 0^{-}case
Claude W. Bernard	Claude W. Bernard'
Department of Physics, Washington University, St. Lowis, Missouri 633130	Institut for Theortical Physics, Univesity of Calijomia, Sonta Barom, Califomia 93100
	Thery Gruap, Fermi National Accelerator Laboratory, P.O. Box 500 , Botavia, Illinois 00510
Amarjit Soni Department of Physics, Brookhaven National Laboratory, Upion, Now York 11973 (Received I July 1993)	Amajiit Soni ond Deporment of Physic, Brookhaven National Laboration, Upton, New Yook 11973' (Recerved 21 December 1990)
VOLUME 45, NUMBER 3 \| FEBRUARY 1992	

Use exptal data + lattice WME to test SM \& search for new physics

VOLUME 56, NUMBER 1
QCD with domain wall quarks
T. Blum ${ }^{*}$ and A. Sonit ${ }^{\dagger}$

Departwent of Physics, Brookhaven National Laboratory, Upton, New York 11973
(Received 27 Novenber 1996)

We present latice calculations in QCD using Shamir's wariant of Kaplan fermions which retain the confinuum $S U\left(N_{L} \times S U(N)_{R}\right.$ chiral symmetry on the latice in the limit of an inffinte extra dimension. In particular, we show that the pion mass and the four quark matrix element related to $K_{0} \cdot \bar{K}_{0}$ mixing lave the expected belarior in the chiral limitt, even on lattices with modest estent in the estra dimencion, eg,

12/20/2017

iic $\mathrm{Na}_{0} \mathrm{ChPT}$

Direct $K>\pi \pi$ (a la Lellouch-Luscher), using finite avereoman far π volume correlation* functions, [i.e. W/O on lallice ChPT] RBC initiates around 2006
CINTINUEO BY R(CC.UKOCDS (mostly) Edimingh:
*Allows to bypass Maint-Testa theorem Soulizampton!
common tinienst: Use of DW Q for simurution

Relating lattice ME to physical amplitudes

F

F is the Lellouch-Luscher factor which relates finite volume ME to the infinite volume

PRL2015

- Using Re (A) and Re (A) from mpgrimentm(A and the phat shifts

RBC-UKQCD PRL'15
$\left.{ }_{0}\right)$ EDITORS CHOICE$\quad\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\}$
$1.38(5.15)(4.43) \times 10^{-4}$, $16.6(2.3) \times 10^{-4}$

Results for

Bearing in mind the largish errors in this first calculation, we interpret that our result are consistent with experiment at ~2б level

$$
w=\frac{R_{e} A_{2}}{\operatorname{Re}_{2} A_{0}} \sim 0.045
$$

Computed ReAD good agreement with expt
Offered an "explanation" of the Delta I=1/2 enhancement

A UNIQUE ASPECT OF OUR CALCULATION

- REAL AO, the strong phase ($\delta 0$) and Im AO are being calculated simultaneously from $1^{\text {st }}$ principles in the same calculation
- Re AO is also known from EXPERIMENT...\& strong phase deduced via ChPT + expt; therefore, these provide a powerful check [amongst many others] of what we are doing
- If a non-perturbative calculation of ImAO and of eps' is done w/o also calculating ReAO \& $\delta 0$ in the same framework, then its repercussions for eps' (in the very least) raises questions.

A possible difficulty: strong phases

- The continuum and our lattice determinations of strong phase
differ

Statistics increase CKelly LLAT i\&

- Original goal was a $4 x$ increase in statistics over 216 configurations used in 2015 analysis.
- 4x reduction in configuration generation time obtained via algorithmic $\xrightarrow[\text { developments (exact one-flavor implementation) }]{\text { Large-scale programme performed involving many machines: }}$ Mup Wy
- Large-scale programme performed involving many machines:

- Measurements performed using IBM BG/Q machines at BNL and the Cori computer (Intel KNL) at NERSC largely complete.
- Including original data, now have 6.7x increase in statistics!

Implications for $\mathrm{K} \rightarrow \pi \pi$ and resolution

- Despite vast increase in statistics, this second state cannot be resolved from the time dependence using only a single $\pi \pi$ operator.
- Possibly a significant underestimate of excited state systematic error in $\mathrm{K} \rightarrow \pi \pi$ calculation that can only be resolved by adding additional operators.
- In response we have expanded the scope of the calculation:
- Added $\mathrm{K} \rightarrow \sigma$ matrix elements
- Added $\mathrm{K} \rightarrow \pi \pi$ matrix element of new $\pi \pi$ operator with larger relative pion momenta (still $\mathrm{p}_{\mathrm{CM}}=0$)
- Result is $3 x$ increase in the number of $I=0 \pi \pi$ operators in $K \rightarrow \pi \pi$ calc.
- Also added $\pi \pi 2$ pt functions with non-zero total $\pi \pi$ momenta.

Calculate phase shift at several (smaller) additional center-of-mass energies.

- Additional points that can be compared to dispersive result / experiment
- Improve $\sim 11 \%$ systematic on Lellouch-Luscher factor associated with slope of phase shift.
- Currently have 152 measurements with new operators! Adding $\mathrm{N} / 00 /$ mintu

Unravelling the $\Delta I=1 / 2$ rule

Dissecting (the much easier) $\Delta I=3 / 2[1=2 \pi \pi]$ Amp on the lattice: 2 contributing topologies only

Tr \times た

Significantly different
from
phenomenological Expectations!

$\operatorname{Tr}(N)$

$\operatorname{Im} A O \& \varepsilon^{\prime}$

Parameter	Value	
	2-state fit	3-state fit
Fit range	$6-15$	$4-15$
$A_{\pi \pi(111)}^{o}$	$0.3682(31)$	$0.3718(22)$
$A_{\pi \pi(311)}^{0}$	$0.00380(32)$	$0.00333(27)$
A_{σ}^{o}	$-0.0004309(41)$	$-0.0004318(42)$
E_{0}	$0.3479(11)$	$0.35030(70)$
$A_{\pi \pi(111)}^{1}$	$0.1712(91)$	$0.1748(67)$
$A_{\pi \pi(311)}^{1}$	$-0.0513(27)$	$-0.0528(30)$
A_{σ}^{1}	$0.000314(17)$	$0.000358(13)$
E_{1}	$0.568(13)$	$0.5879(65)$
$A_{\pi \pi(111)}^{2}$	-	$0.116(29)$
$A_{\pi \pi(311)}^{2}$	-	$0.063(10)$
A_{σ}^{2}	-	$0.000377(94)$
E_{2}	-	$0.94(10)$
$\mathrm{p}-\mathrm{value}$	0.314	092

TABLE III: Fit parameters in lattice units and the p-values for multi-operator fits to the $I=0 \pi \pi$ two-point functions. Here E_{i} are the energies of the states and A_{α}^{i} represents the matrix element of the operator α between the state i and the vacuum, given in units of $\sqrt{1 \times 10^{13}}$. The second column gives the parameters for our primary fit which uses two-states and three operators. The third column shows a fit with the same three operators and one additional state that is used to probe the systematic effects of this third state on the $K \rightarrow \pi \pi$ matrix element fits.
 2020

(a) type 1

ALL
ARE NCLOUED!

TABLE XVIII: The contributions of each of the ten four-quark operators to $\operatorname{Re}\left(A_{0}\right)$ and $\operatorname{Im}\left(A_{0}\right)$ for the two different RI-SMOMintermediate schemes. The scheme and units are listed in the column headers. The errors are statistical, only.

Error source	Value
Excited state	-
Unphysical kinemalics	5%
Finite lattice spacing	12%
Lellouch-Luischer factor	1.5%
Finite-volume corrections	7%
Missing G G_{1} operator	3%
Renormalization	4%
Total	15.7%

TABLEXXV: Relative systematic errors on the infinite-volume matrix elements of $\overline{M S}$-renormalized four-quark operators Q_{j}^{\prime} '

Systemato emors

Error source	Value	
	Re $\left(A_{0}\right)$	$\operatorname{Im}\left(A_{0}\right)$
Matrix elements	15.7%	15.7%
Parametric errors	0.3%	6%
Wilson coefficients	12%	12%
Total	19.8%	20.7%

TABLEXXV: Relative systematic errors on Re (AO) and Im $\left(A_{0}\right)$.

TABLE I: A summary of the primary results of this work. The values in parentheses give the statistical and systematic errors, respectively. For the last entry the systematic error associated with electromagnetism and isospin breaking is listed separately as a third error contribution.

IB+EM effects.....not yet from lattice

We use

$$
\frac{\varepsilon^{\prime}}{\varepsilon}=\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re}\left(A_{2}\right)}-\frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right] \xrightarrow{\text { isospin Sym }} \begin{aligned}
& \text { formes } \\
& \text { form } \\
& (17+9.1) \times 10^{-2}
\end{aligned}
$$

$I B+\Sigma m e f f$

$$
\begin{aligned}
& I B+\varepsilon_{2} m e f y \\
& \Rightarrow \quad \frac{\varepsilon^{\prime}}{\varepsilon}=\frac{i\left(0_{+} e^{i\left(\delta_{2}-\delta_{0}\right)}\right.}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im}\left(A_{2}^{\operatorname{emp}}\right)}{\operatorname{Re}\left(A_{2}^{(0)}\right)}-\frac{\operatorname{Im}\left(A_{0}^{(0)}\right)}{\operatorname{Re}\left(A_{0}^{(0)}\right)}\left(1-\hat{\Omega}_{\text {eff }}\right)\right]
\end{aligned} \begin{aligned}
& \text { See } \\
& \text { Ciniglienoetal } \\
& 19 \mu .01359
\end{aligned}
$$

THIS isNOT WW WWK LE CHODSE To include THIS im ou fano

FIG. 12: The horizontal-band constraint on the CKM matrix unitarity triangle in the $\bar{\rho}-\bar{\eta}$ plane obtained from our calculation of ε^{\prime}, along with constraints obtained from other inputs $[6,70,71]$. The error bands represent the statistical and systematic errors combined in quadrature. Note that the band labeled ε^{\prime} is historically (e.g. in Ref. [72]) labeled as $\varepsilon^{\prime} / \varepsilon$, where ε is taken from experiment.

Naturalness: an important consideration

A firm believer in naturalness

my Car's Licence plate in CA

- Used to be OSCILL8 (through the 80's while @UCLA)

Implicatonnson ND of N atimalmess
DRAVING STRONG CONCLLSIONS
BASED $m 20 \%$ tests is OR 35\% TOD RISky!
\& To e Prematare
\Rightarrow Its impenative that we cortinnue to improve on precision

A lesson from history (1)

"A special search at Dubna was carried out by E. Okonov and his group. They did not find a single $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$event among 600 decays into charged particles [12] (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."
-Lev Okun, "The Vacuum as Seen from Moscow"

Summary + Outlook 1 of 2 pages

- After decades of effort, overcoming major hurdles, using DWQ with essentially continuum-like fermions along with improved renormalization methodology, cutting edge statistical analysis and algorithmic advances, RBC-UKQCD is presenting an updated result on SM-eps' ~ $21.7(26)(62)(50) \times 10^{-4}$ which is compatible [within errors] with the measured value 16.6(2.3)X10-4
- Bearing in mind that this is an extremely treacherous calculation loaded with numerous avenues of errors and oversights, an independent calculation has been in process for about ~ 3 years within RBC-UKQCD. This effort is led by Tom Blum with (then g.s.) Dan Hoying/Masaaki Tomii, U Conn-BNL, Taku Izubuchi et al. This path uses PBC unlike the currently finished result which used GPBC...we hope to have $1^{\text {st }}$ results from PBC in ~ 2 years.
- Also GPBC effort will be continued at other lattice spacing(s)

Summary + Outlook

- Lattice efforts to incorporate IB + EM effects are being studied but have some ways to go before they can tackle K=> pi pi and eps'
- With physical pions, kaons and such first glance at lattice ChPT is quite encouraging, see RBC-UKQCD, David Murphy et al 2015 andDM, PhD thesis, Columbia Univ
- This begs the question that much simpler path could now be used via BDSPW [LO ChPT] and/or L+S [NLOChPT] to address eps'...This could be tens of times simpler though at some cost in accuracy..........all this needs to be studied...Mattia Bruno, Christoph Lehner + AS et al
- Hope to have an improved result on eps' with $\mathrm{O}(15 \%)$ errors in ~ 3 years

EXTRAS

Lattice used

$$
\begin{aligned}
& \text { Mans }
\end{aligned}
$$

Ckeckm/8

- Neutral kaon mixing induced by $2^{\text {nd }}$ order weak processes gives rise to mass difference between K_{L} and K_{S}

$$
\Delta M_{K}=2 \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}
$$

B. Wamg C LAT'IS

- FCNC \rightarrow highly suppressed in SM due to GIM mechanism: $\Delta \mathrm{m}_{\mathrm{K}}=3.483(6) \times 10^{-12}$ MeV small and highly sensitive to new BSM FCNC.
- PT calc using weak EFT with $\Delta S=2$ eff. Hamiltonian (charm integrated out) dominated by $\mathrm{p} \sim \mathrm{m}_{\mathrm{c}}$: poor PT convergence at charm scale $\rightarrow \sim 36 \%$ PT sys error.
- PT calc neglects long-distance effects arising when 2 weak operators separated by distance $\sim 1 / \wedge_{\mathrm{QCD}}$.
- Use lattice to evaluate matrix element of product of $\mathrm{H}_{\mathrm{w}}{ }^{\Delta S=1, \text { eff }}$ directly:

OOETOVESTRYEASS!

FIG. 3: Contractions (1), -(2) and (1) + (2) as functions of t from the simulation at threshold with $m_{\pi} \simeq 330 \mathrm{MeV}$ and $\Delta=20$.

FIG. 3: Contractions (1), -(2) and (1) + (2) as functions of t from the simulation at threshold with $m_{\pi} \simeq 330 \mathrm{MeV}$ and $\Delta=20$.

Net effect

- This large cancellation between \mathbf{N}^{2} and \mathbf{N} [$N=3$,for QCD] leads to a reduction in ReA2 compared to "naïve expectations" by a factor of about 4 to 5 in the original effect of around 22.5
- Then there is a factor of 2 to $\mathbf{3}$ from renorm...=> bringing the total to [8 to 15] of the needed 22.5
- The remaining factor of ~[1.5 to 2.8] ... comes from ReA0 over "naïve expectations"

More on AO

- Another important fact about Re A0 is that at a scale of $\sim 1.3 \mathrm{GeV}$ or more, the contribution from penguin operators, Q3,Q4,Q5,Q6,is negligibly small.
- Indeed, ~85\% of ReA0 originates at these scales from Q2 which is just the original Weak interaction 4-q operator: [s-bar gamma_muL u]X[d-bar gamma_uL u], which originates from integrating out the W-boson.
- The essential moral is that if you take the original weak interaction 4q operraor and non-pertubatively compute its matrix element between K to pi pi in the $I=0$ channel then it accounts for most ($\sim 85 \%$) of Re AO.....
- Lastly, but equally importantly, it should be stressed that the SVZ-penguin operator Q6 is in fact the dominant contributor to Im A0.

Why EWK cannot be neglected: 3 Reasons

- Despite $\alpha_{\text {QED,EWK }} \ll \alpha_{\text {OCD }}$, EWK contributions are extremely important and CANNOT be neglected:
- EWK are $(8,8)$ and QCD are $(8,1)$, and $(8,8)$ go to constant whereas (8,1) vanish in the chiral limit
- EWK, i.e. those due Z exch have Wilson coeff that go as $\mathrm{mt}^{2} / \mathrm{mW}^{2}$

Why EWK cannot be neglected: 3 Reasons

- Despite $\alpha_{\text {QED,EWK }} \ll \alpha_{\text {OCD }}$, EWK contributions are extremely important and CANNOT be neglected:
- EWK are $(8,8)$ and QCD are $(8,1)$, and $(8,8)$ go to constant whereas (8,1) vanish in the chiral limit
- EWK, i.e. those due Z exch have Wilson coeff that go as $\mathrm{mt}^{2} / \mathrm{mW}^{2}$

 ICHEP 072820; soni, HET-BNL O OWLFM

RBC $N H D D$

 2009.0940
7-0ps.
 10-0ps.

i	$\operatorname{SMOM}(\boldsymbol{q}, \boldsymbol{q})\left(\mathrm{GeV}^{3}\right)$	$\operatorname{SMOM}\left(\gamma^{\mu}, \gamma^{\mu}\right)\left(\mathrm{GeV}^{3}\right)$	$\overline{\mathrm{MS}}$ via $\operatorname{SMOM}(\boldsymbol{q}, \boldsymbol{q})\left(\mathrm{GeV}^{3}\right)$	$\overline{\mathrm{MS}}$ via SMOM $\left(\gamma^{\mu}, \gamma^{\mu}\right)\left(\mathrm{GeV}^{3}\right)$
1	$0.060(39)$	$0.059(38)$	$-0.107(22)$	$-0.093(18)$
2	$-0.125(19)$	$-0.106(16)$	$0.147(15)$	$0.143(14)$
3	$0.142(17)$	$0.128(14)$	$-0.086(61)$	$-0.053(44)$
4	-	-	$0.185(53)$	$0.200(40)$
5	$-0.351(62)$	$-0.313(48)$	$-0.348(62)$	$-0.311(48)$
6	$-1.306(90)$	$-1.214(82)$	$-1.308(90)$	$-1.272(86)$
7	$0.775(23)$	$0.790(23)$	$0.769(23)$	$0.784(23)$
8	$3.312(63)$	$3.092(58)$	$3.389(64)$	$3.308(63)$
9	-	-	$-0.117(20)$	$0.123(19)$
10	-	$0.137(22)$		

TABLE XIV: Physical, infinite-volume matrix elements in the $\operatorname{SMOM}(\phi, \phi)$ and $\operatorname{SMOM}\left(\gamma^{\mu}, \gamma^{\mu}\right)$ schemes at $\mu=4.006 \mathrm{GeV}$ given in the 7 -operator chiral basis, as well as those converted perturbatively into the $\overline{\mathrm{MS}}$ scheme at the same scale in the 10 -operator basis. The errors are statistical only.

2 schemes

Constraint on the Mass Scale of a Left-Right-Symmetric Electroweak Theory

from the $K_{L}-K_{S}$ Mass Difference
G. Beall and Myron Bander

Department of Physics, University of California, Irvine, California 92717
and
A. Soni

Department of Physics, University of California, Los Angeles, California 9002
The $K_{L}-K_{S}$ mass difference provides a stringent constraint on the mass $\left(M_{k}\right)$ of the
charged right-handed gauge field occurring in a "manifest" left-right-symmetric elect
charged right-handed gauge field occurring in a "manifest" left-right-symmetric electro-
weak theory, yielding $M_{\kappa} z 1.6 \mathrm{TeV}$. Taken in the context of a grand-unifying gauge theory, weak theory, yielding $M_{K}<1.6 \mathrm{TeV}$. Taken in the context of a grand-unifying gauge theory
e.g., $\mathrm{O}(10)$, such a large bound on $M_{\mathcal{R}}$, along with the measured value of $\sin ^{2} \theta_{\mathrm{w}}$, implies that $M_{R} z 10^{9} \mathrm{GeV}$.
$A_{L R}(\overline{d s} \rightarrow \overline{d s})=\left(\frac{g}{\sqrt{2}}\right)^{4}\left(\frac{O_{R}}{8 \pi^{2} M_{R}^{4}}\right) \sum_{i, j=1, i, t}^{1} \sum_{i} m_{i} U_{i s}{ }^{R} * U_{i d} L_{m} m_{j} U_{j s} L_{*} U_{j d}^{R}$
$x\left[\frac{\beta \ln \beta}{(1-\beta)\left(\epsilon_{i}-\beta\right)\left(\epsilon_{j}-\beta\right)}+\frac{\epsilon_{i} \ln \epsilon_{i}}{\left(1-\epsilon_{i}\right)\left(\beta-\epsilon_{i}\right)\left(\epsilon_{j}-\epsilon_{i}\right)}+\frac{\epsilon_{j} \ln \epsilon_{j}}{\left(1-\epsilon_{j}\right)\left(\beta-\epsilon_{j}\right)\left(\epsilon_{i}-\epsilon_{j}\right)}\right], \quad$ (2)

$$
\frac{m_{L} R M}{m_{s M}} \sim 7.7
$$

 obtain
P.Bigleet al 1812.04981
the five operators 0_{i}. In our framework we are interested only in the parity. even operators. In the so-called SUSY basis introduced in [2], the parity-even operator ar are,

$$
\begin{align*}
& O_{2}=\left(\bar{s}_{a}\left(1-v_{s}\right) d_{a}\right)\left(\bar{s}_{b}\left(1-\nu_{s}\right) d_{b}\right) \\
& O_{3}=\left(\bar{s}_{a}\left(1-\gamma_{s}\right) d_{b}\right)\left(\bar{s}_{b}\left(1-\gamma_{s}\right) d_{a}\right) \tag{1.2}
\end{align*}
$$

$$
\begin{aligned}
& 0_{5}=\left(\bar{s}_{a}\left(1-v_{j} d_{b}\right)\left(\bar{s}_{b}\left(1+v_{j}\right) d_{a}\right)\right. \text {. }
\end{aligned}
$$

$$
\frac{M_{i}^{B S M}}{m_{\sin }} 0 / 2
$$

Table 3: Comparison of the results of this work in $\overline{\mathrm{MS}}(\mu=3 \mathrm{GeV})$ alongside our collaboration's previous results presented in [5].

	RBC-UKQCD16[5]	This Work
$N_{f}=$	$2+1$	$2+1$
scheme	RI-SMOM	RI-SMOM
R_{2}	$-19.48(44)(52)$	$-18.83(17)(55)$
R_{3}	$6.08(15)(23)$	$5.815(63)(125)$
R_{4}	$43.11(89)(230)$	$41.58(37)(119)$
R_{5}	$10.99(20)(88)$	$10.81(9)(37)$

$\stackrel{y}{c}$

