

# Rare *B*-decay anomalies: finding NP with $B \to K^* \mu^+ \mu^-$

# **Siavash Neshatpour**

Lyon University, IP21

Based on arXiv: 2006.04213

In collaboration with T. Hurth, N. Mahmoudi

**ICHEP 2020** 

Prague via Zoom

## Rare B-decay anomalies

Several deviations ("anomalies") with respect to the SM predictions in  $b \to s\ell\ell$  measurements

Branching fractions:

$$B \to K \mu^+ \mu^-$$

$$B \to K^* \mu^+ \mu^-$$

$$B \to K^* \mu^+ \mu^-$$

$$B_s \to \phi \mu^+ \mu^-$$

$$\Lambda_b \to \Lambda \mu^+ \mu^-$$

• 
$$\Lambda_b \to \Lambda \mu^+ \mu^-$$



- Lepton flavour violating ratios:
  - $R_K$
  - $R_{K^*}$





Several deviations ("anomalies") with respect to the SM predictions in  $b \to s\ell\ell$  measurements

- Long standing anomaly in the  $B \to K^* \mu^+ \mu^-$  angular observable  $P_5' / S_5 (= P_5' \times \sqrt{F_L(1 F_L)})$ 
  - 2013 LHCb (1 fb<sup>-1</sup>)
  - $2016 \text{ LHCb} (3 \text{ fb}^{-1})$
  - 2020 LHCb (4.7 fb<sup>-1</sup>)



[E. Smith CERN Seminar '20 LHCb 2003.04831]

- $\geq$  2.5 $\sigma$  & 2.9 $\sigma$  local tension in  $P_5'$  with the respect SM predictions (DHMV)
- deviations in other angular observables/bins

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[ \sum_{i=1...6} \frac{C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu)}{} \Big]$$



factorisable contributions: 7 independent form factors  $\tilde{V}_{+,0}$ ,  $\tilde{T}_{+,0}$ ,  $\tilde{S}$ 

[Khodjamirian et al. '10, Bharucha et al. '15, Gubernari et al. '18]

## Helicity amplitudes:

$$H_{V}(\lambda) = -i \, N' \Big\{ (C_{9}^{\text{eff}} - C_{9}') \tilde{V}_{\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \Big[ \frac{2 \, \hat{m}_{b}}{m_{B}} (C_{7}^{\text{eff}} - C_{7}') \tilde{T}_{\lambda}(q^{2}) \Big] \Big\}$$

$$H_{A}(\lambda) = -i \, N' (C_{10} - C_{10}') \tilde{V}_{\lambda}(q^{2})$$

$$H_{P} = i \, N' \Big\{ \frac{2 \, m_{\ell} \hat{m}_{b}}{q^{2}} (C_{10} - C_{10}') \Big( 1 + \frac{m_{s}}{m_{t}} \Big) \tilde{S}(q^{2}) \Big\}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[ \sum_{i=1\dots 6} \frac{C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu)}{\bar{\ell}} \right]$$

$$\bar{\ell}_{\ell}$$

$$\bar{B}_{\ell}^{C_{1,\dots,6}} (\bar{K}^*)$$

$$\bar{B}_{\ell}^{C_{1,\dots,6}} (\bar{K}^*)$$

non-local effects: in general "naïve" factorization not applicable

$$\frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[ \underbrace{Y(q^2) \tilde{V}_{\lambda}}_{\text{fact., perturbative}} + \underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{non-fact., QCDf}} + \underbrace{h_{\lambda}(q^2)}_{\text{power corrections,}} \right]$$



factorisable contributions: 7 independent form factors  $\tilde{V}_{\pm,0}$ ,  $\tilde{T}_{\pm,0}$ ,  $\tilde{S}$ 

[Khodjamirian et al. '10, Bharucha et al. '15, Gubernari et al. '18]

## Helicity amplitudes:

$$H_V(\lambda) = -i \, N' \Big\{ (C_9^{\text{eff}} - C_9') \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \Big[ \frac{2 \, \hat{m}_b}{m_B} (C_7^{\text{eff}} - C_7') \tilde{T}_{\lambda}(q^2) - 16\pi^2 \mathcal{N}_{\lambda}(q^2) \Big] \Big\}$$

$$H_A(\lambda) = -i N' (C_{10} - C'_{10}) \tilde{V}_{\lambda}(q^2)$$

$$H_P = i N' \left\{ \frac{2 m_{\ell} \hat{m}_b}{q^2} \left( \frac{C_{10} - C'_{10}}{q} \right) \left( 1 + \frac{m_s}{m_b} \right) \tilde{S}(q^2) \right\}$$

To distinguish hadronic effects from NP in  $C_{7,9}$  good control over hadronic contributions needed



non-local effects: in general "naïve" factorization not applicable

$$\frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[ \underbrace{Y(q^2) \tilde{V}_{\lambda}}_{\text{fact., perturbative}} + \underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{non-fact., QCDf}} + \underbrace{h_{\lambda}(q^2)}_{\text{power corrections, power corrections}} \right]$$

factorisable contributions: 7 independent form factors  $\tilde{V}_{+,0}$ ,  $\tilde{T}_{+,0}$ ,  $\tilde{S}$ 

[Khodjamirian et al. '10, Bharucha et al. '15, Gubernari et al. '18]

## Calculated at LO in QCD factorisation [Beneke et al. '01 & '04], but higher powers are unknown

- partial calculation with LCSR and dispersion relations [Khodjamirian et al. 1006.4945]
- recent progress exploiting analyticity of amplitudes [Bobeth et al. 1707.07305] & ongoing work or van Dyk et al.

### Power corrections often "guesstimated"

Significance of tensions in  $B \to K^* \mu^+ \mu^-$  angular observables depends on the choice of "guesstimate" made for the size of the power corrections  $(h_{\lambda})$ 

#### NP effect vs. hadronic contributions

Instead of making assumptions on the size of the power corrections  $h_{\lambda}$ , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

$$h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$$

 $\Rightarrow$  NP effects in  $C_9$  are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791]

Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

#### NP effect vs. hadronic contributions

Instead of making assumptions on the size of the power corrections  $h_{\lambda}$ , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

$$h_{\pm,[0]} = \left[\sqrt{q^2}\times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$$

 $\Rightarrow$  NP effects in  $C_9$  are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791]

Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

Fit to

Wilson coefficient  $\delta C_9^{\rm NP}$ 

Hadronic quantities  $h_{+,-,0}^{(0,1,2)}$  (18 parameters)

$$B o K^* \mu^+ \mu^-$$
 observables (low  $q^2$ ) and BR( $B o K^* \gamma$ )



Instead of making assumptions on the size of the power corrections  $h_{\lambda}$ , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

$$h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$$

 $\Rightarrow$  NP effects in  $C_9$  are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791]

Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

Fit to

- Wilson coefficient  $\delta C_9^{\mathrm{NP}}$
- Hadronic quantities  $h_{+,-,0}^{(0,1,2)}$  (18 parameters)

| $B	o K^*\mu^+\mu^-$ observables (low $q^2$ ) and BR( $B	o K^*\gamma$ ) |               |               |  |  |
|------------------------------------------------------------------------|---------------|---------------|--|--|
| Real $\delta C_9$ Hadronic fit (18)                                    |               |               |  |  |
| Plain SM                                                               | $(6.0\sigma)$ | $(4.7\sigma)$ |  |  |
| Real $\delta \mathcal{C}_9$                                            |               | $(1.5\sigma)$ |  |  |



Fit to  $\delta C_9$  improves description of the data with  $6\sigma$  compared to the SM (w/o any uncertainty for p.c.)

#### NP effect vs. hadronic contributions

Instead of making assumptions on the size of the power corrections  $h_{\lambda}$ , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157]

$$h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$$

 $\Rightarrow$  NP effects in  $C_9$  are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791]

Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

Fit to

- Wilson coefficient  $\delta C_9^{\rm NP}$
- Hadronic quantities  $h_{+,-,0}^{(0,1,2)}$  (18 parameters)

| $B	o K^*\mu^+\mu^-$ observables (low $q^2$ ) and BR( $B	o K^*\gamma$ ) |               |               |  |  |  |
|------------------------------------------------------------------------|---------------|---------------|--|--|--|
| Real $\delta \mathcal{C}_9$ Hadronic fit                               |               |               |  |  |  |
| Plain SM                                                               | $(6.0\sigma)$ | $(4.7\sigma)$ |  |  |  |
| Real $\delta \mathcal{C}_9$                                            |               | $(1.5\sigma)$ |  |  |  |



- Fit to  $\delta C_9$  improves description of the data with  $6\sigma$  compared to the SM (w/o any uncertainty for p.c.)
- Hadronic fit also describes the data well, however adding 17 more parameters compared to the NP in  $C_9$  doesn't significantly improve the fit ( $\sim 1.5\sigma$ )

|                 | $B \to K^* \bar{\mu} \mu / \gamma$ observables                                         |                                   |  |  |  |
|-----------------|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| (               | $(\chi_{\rm SM}^2 = 85.15, \ \chi_{\rm min}^2 = 25.96; \ {\rm Pull_{SM}} = 4.7\sigma)$ |                                   |  |  |  |
|                 | Real                                                                                   | Imaginary                         |  |  |  |
| $h_{+}^{(0)}$   | $(-2.37 \pm 13.50) \times 10^{-5}$                                                     | $(7.86 \pm 13.79) \times 10^{-5}$ |  |  |  |
| $h_{\pm}^{(1)}$ | $(1.09 \pm 1.81) \times 10^{-4}$                                                       | $(1.58 \pm 1.69) \times 10^{-4}$  |  |  |  |
| $h_{+}^{(2)}$   | $(-1.10 \pm 2.66) \times 10^{-5}$                                                      | $(-2.45 \pm 2.51) \times 10^{-5}$ |  |  |  |
| $h_{-}^{(0)}$   | $(1.43 \pm 12.85) \times 10^{-5}$                                                      | $(-2.34 \pm 3.09) \times 10^{-4}$ |  |  |  |
| $h_{-}^{(1)}$   | $(-3.99 \pm 8.11) \times 10^{-5}$                                                      | $(1.44 \pm 2.82) \times 10^{-4}$  |  |  |  |
| $h_{-}^{(2)}$   | $(2.04 \pm 1.16) \times 10^{-5}$                                                       | $(-3.25 \pm 3.98) \times 10^{-5}$ |  |  |  |
| $h_0^{(0)}$     | $(2.38 \pm 2.43) \times 10^{-4}$                                                       | $(5.10 \pm 3.18) \times 10^{-4}$  |  |  |  |
| $h_0^{(1)}$     | $(1.40 \pm 1.98) \times 10^{-4}$                                                       | $(-1.66 \pm 2.41) \times 10^{-4}$ |  |  |  |
| $h_0^{(2)}$     | $(-1.57 \pm 2.43) \times 10^{-5}$                                                      | $(3.04 \pm 29.87) \times 10^{-6}$ |  |  |  |



Red line: LO QCDf

Solid black line:  $h_{\lambda}$ 

- $\triangleright$  *h*<sub>λ</sub> compatible with zero at 1σ level
- → too many free parameters to get strongly constrained with current data

|                 | $D - U^* - I - 11$                                                                     |                                   |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
|                 | $B \to K^* \bar{\mu} \mu / \gamma$ observables                                         |                                   |  |  |  |  |
| (               | $(\chi_{\rm SM}^2 = 85.15, \ \chi_{\rm min}^2 = 25.96; \ {\rm Pull_{SM}} = 4.7\sigma)$ |                                   |  |  |  |  |
|                 | Real                                                                                   | Imaginary                         |  |  |  |  |
| $h_{+}^{(0)}$   | $(-2.37 \pm 13.50) \times 10^{-5}$                                                     | $(7.86 \pm 13.79) \times 10^{-5}$ |  |  |  |  |
| $h_{\pm}^{(1)}$ | $(1.09 \pm 1.81) \times 10^{-4}$                                                       | $(1.58 \pm 1.69) \times 10^{-4}$  |  |  |  |  |
| $h_{+}^{(2)}$   | $(-1.10 \pm 2.66) \times 10^{-5}$                                                      | $(-2.45 \pm 2.51) \times 10^{-5}$ |  |  |  |  |
| $h_{-}^{(0)}$   | $(1.43 \pm 12.85) \times 10^{-5}$                                                      | $(-2.34 \pm 3.09) \times 10^{-4}$ |  |  |  |  |
| $h_{-}^{(1)}$   | $(-3.99 \pm 8.11) \times 10^{-5}$                                                      | $(1.44 \pm 2.82) \times 10^{-4}$  |  |  |  |  |
| $h_{-}^{(2)}$   | $(2.04 \pm 1.16) \times 10^{-5}$                                                       | $(-3.25 \pm 3.98) \times 10^{-5}$ |  |  |  |  |
| $h_0^{(0)}$     | $(2.38 \pm 2.43) \times 10^{-4}$                                                       | $(5.10 \pm 3.18) \times 10^{-4}$  |  |  |  |  |
| $h_0^{(1)}$     | $(1.40 \pm 1.98) \times 10^{-4}$                                                       | $(-1.66 \pm 2.41) \times 10^{-4}$ |  |  |  |  |
| $h_0^{(2)}$     | $(-1.57 \pm 2.43) \times 10^{-5}$                                                      | $(3.04 \pm 29.87) \times 10^{-6}$ |  |  |  |  |



Red line: LO QCDf

Solid black line:  $h_{\lambda}$ 

- $\triangleright$  *h*<sub>λ</sub> compatible with zero at 1σ level
- → too many free parameters to get strongly constrained with current data

| $B \to K^* \bar{\mu} \mu / \gamma$ observables |                                                                                        |                                   |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| (                                              | $(\chi_{\rm SM}^2 = 85.15, \ \chi_{\rm min}^2 = 25.96; \ {\rm Pull_{SM}} = 4.7\sigma)$ |                                   |  |  |  |
|                                                | Real                                                                                   | Imaginary                         |  |  |  |
| $h_{+}^{(0)}$                                  | $(-2.37 \pm 13.50) \times 10^{-5}$                                                     | $(7.86 \pm 13.79) \times 10^{-5}$ |  |  |  |
| $h_{\pm}^{(1)}$                                | $(1.09 \pm 1.81) \times 10^{-4}$                                                       | $(1.58 \pm 1.69) \times 10^{-4}$  |  |  |  |
| $h_{+}^{(2)}$                                  | $(-1.10 \pm 2.66) \times 10^{-5}$                                                      | $(-2.45 \pm 2.51) \times 10^{-5}$ |  |  |  |
| $h_{-}^{(0)}$                                  | $(1.43 \pm 12.85) \times 10^{-5}$                                                      | $(-2.34 \pm 3.09) \times 10^{-4}$ |  |  |  |
| $h_{-}^{(1)}$                                  | $(-3.99 \pm 8.11) \times 10^{-5}$                                                      | $(1.44 \pm 2.82) \times 10^{-4}$  |  |  |  |
| $h_{-}^{(2)}$                                  | $(2.04 \pm 1.16) \times 10^{-5}$                                                       | $(-3.25 \pm 3.98) \times 10^{-5}$ |  |  |  |
| $h_0^{(0)}$                                    | $(2.38 \pm 2.43) \times 10^{-4}$                                                       | $(5.10 \pm 3.18) \times 10^{-4}$  |  |  |  |
| $h_0^{(1)}$                                    | $(1.40 \pm 1.98) \times 10^{-4}$                                                       | $(-1.66 \pm 2.41) \times 10^{-4}$ |  |  |  |
| $h_0^{(2)}$                                    | $(-1.57 \pm 2.43) \times 10^{-5}$                                                      | $(3.04 \pm 29.87) \times 10^{-6}$ |  |  |  |



Red line: LO QCDf

Solid black line:  $h_{\lambda}$ 

- $\triangleright$   $h_{\lambda}$  compatible with zero at  $1\sigma$  level
- → too many free parameters to get strongly constrained with current data

|               | $B \to K^* \bar{\mu} \mu / \gamma$ observables                                         |                                   |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| (             | $(\chi_{\rm SM}^2 = 85.15, \ \chi_{\rm min}^2 = 25.96; \ {\rm Pull_{SM}} = 4.7\sigma)$ |                                   |  |  |  |  |
|               | Real                                                                                   | Imaginary                         |  |  |  |  |
| $h_{+}^{(0)}$ | $(-2.37 \pm 13.50) \times 10^{-5}$                                                     | $(7.86 \pm 13.79) \times 10^{-5}$ |  |  |  |  |
| $h_{+}^{(1)}$ | $(1.09 \pm 1.81) \times 10^{-4}$                                                       | $(1.58 \pm 1.69) \times 10^{-4}$  |  |  |  |  |
| $h_{+}^{(2)}$ | $(-1.10 \pm 2.66) \times 10^{-5}$                                                      | $(-2.45 \pm 2.51) \times 10^{-5}$ |  |  |  |  |
| $h_{-}^{(0)}$ | $(1.43 \pm 12.85) \times 10^{-5}$                                                      | $(-2.34 \pm 3.09) \times 10^{-4}$ |  |  |  |  |
| $h_{-}^{(1)}$ | $(-3.99 \pm 8.11) \times 10^{-5}$                                                      | $(1.44 \pm 2.82) \times 10^{-4}$  |  |  |  |  |
| $h_{-}^{(2)}$ | $(2.04 \pm 1.16) \times 10^{-5}$                                                       | $(-3.25 \pm 3.98) \times 10^{-5}$ |  |  |  |  |
| $h_0^{(0)}$   | $(2.38 \pm 2.43) \times 10^{-4}$                                                       | $(5.10 \pm 3.18) \times 10^{-4}$  |  |  |  |  |
| $h_0^{(1)}$   | $(1.40 \pm 1.98) \times 10^{-4}$                                                       | $(-1.66 \pm 2.41) \times 10^{-4}$ |  |  |  |  |
| $h_0^{(2)}$   | $(-1.57 \pm 2.43) \times 10^{-5}$                                                      | $(3.04 \pm 29.87) \times 10^{-6}$ |  |  |  |  |



Red line: LO QCDf

Solid black line:  $h_{\lambda}$ 

- $h_{\lambda}$  compatible with zero at  $1\sigma$  level
- → too many free parameters to get strongly constrained with current data

|               | $B \to K^* \bar{\mu} \mu / \gamma$ observables                                         |                                   |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| (             | $(\chi_{\rm SM}^2 = 85.15, \ \chi_{\rm min}^2 = 25.96; \ {\rm Pull_{SM}} = 4.7\sigma)$ |                                   |  |  |  |  |
|               | Real                                                                                   | Imaginary                         |  |  |  |  |
| $h_{+}^{(0)}$ | $(-2.37 \pm 13.50) \times 10^{-5}$                                                     | $(7.86 \pm 13.79) \times 10^{-5}$ |  |  |  |  |
| $h_{+}^{(1)}$ | $(1.09 \pm 1.81) \times 10^{-4}$                                                       | $(1.58 \pm 1.69) \times 10^{-4}$  |  |  |  |  |
| $h_{+}^{(2)}$ | $(-1.10 \pm 2.66) \times 10^{-5}$                                                      | $(-2.45 \pm 2.51) \times 10^{-5}$ |  |  |  |  |
| $h_{-}^{(0)}$ | $(1.43 \pm 12.85) \times 10^{-5}$                                                      | $(-2.34 \pm 3.09) \times 10^{-4}$ |  |  |  |  |
| $h_{-}^{(1)}$ | $(-3.99 \pm 8.11) \times 10^{-5}$                                                      | $(1.44 \pm 2.82) \times 10^{-4}$  |  |  |  |  |
| $h_{-}^{(2)}$ | $(2.04 \pm 1.16) \times 10^{-5}$                                                       | $(-3.25 \pm 3.98) \times 10^{-5}$ |  |  |  |  |
| $h_0^{(0)}$   | $(2.38 \pm 2.43) \times 10^{-4}$                                                       | $(5.10 \pm 3.18) \times 10^{-4}$  |  |  |  |  |
| $h_0^{(1)}$   | $(1.40 \pm 1.98) \times 10^{-4}$                                                       | $(-1.66 \pm 2.41) \times 10^{-4}$ |  |  |  |  |
| $h_0^{(2)}$   | $(-1.57 \pm 2.43) \times 10^{-5}$                                                      | $(3.04 \pm 29.87) \times 10^{-6}$ |  |  |  |  |



Red line: LO QCDf

Solid black line:  $h_{\lambda}$ 

- $\triangleright$  *h*<sub>λ</sub> compatible with zero at 1σ level
- → too many free parameters to get strongly constrained with current data

| $B \to K^* \bar{\mu} \mu / \gamma$ observables |                                                                                        |                                   |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| (                                              | $(\chi_{\rm SM}^2 = 85.15, \ \chi_{\rm min}^2 = 25.96; \ {\rm Pull_{SM}} = 4.7\sigma)$ |                                   |  |  |  |
|                                                | Real                                                                                   | Imaginary                         |  |  |  |
| $h_{+}^{(0)}$                                  | $(-2.37 \pm 13.50) \times 10^{-5}$                                                     | $(7.86 \pm 13.79) \times 10^{-5}$ |  |  |  |
| $h_{\pm}^{(1)}$                                | $(1.09 \pm 1.81) \times 10^{-4}$                                                       | $(1.58 \pm 1.69) \times 10^{-4}$  |  |  |  |
| $h_{+}^{(2)}$                                  | $(-1.10 \pm 2.66) \times 10^{-5}$                                                      | $(-2.45 \pm 2.51) \times 10^{-5}$ |  |  |  |
| $h_{-}^{(0)}$                                  | $(1.43 \pm 12.85) \times 10^{-5}$                                                      | $(-2.34 \pm 3.09) \times 10^{-4}$ |  |  |  |
| $h_{-}^{(1)}$                                  | $(-3.99 \pm 8.11) \times 10^{-5}$                                                      | $(1.44 \pm 2.82) \times 10^{-4}$  |  |  |  |
| $h_{-}^{(2)}$                                  | $(2.04 \pm 1.16) \times 10^{-5}$                                                       | $(-3.25 \pm 3.98) \times 10^{-5}$ |  |  |  |
| $h_0^{(0)}$                                    | $(2.38 \pm 2.43) \times 10^{-4}$                                                       | $(5.10 \pm 3.18) \times 10^{-4}$  |  |  |  |
| $h_0^{(1)}$                                    | $(1.40 \pm 1.98) \times 10^{-4}$                                                       | $(-1.66 \pm 2.41) \times 10^{-4}$ |  |  |  |
| $h_0^{(2)}$                                    | $(-1.57 \pm 2.43) \times 10^{-5}$                                                      | $(3.04 \pm 29.87) \times 10^{-6}$ |  |  |  |



Red line: LO QCDf

Solid black line:  $h_{\lambda}$ 

- $\triangleright$  *h*<sub>λ</sub> compatible with zero at 1σ level
- → too many free parameters to get strongly constrained with current data

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, PC}$$
 for each helicity  $(\lambda = +, -, 0)$  a different  $\Delta C_9^{PC}$   $\rightarrow$  three real (six complex) parameters

If NP in  $C_9$  is the favoured scenario, the three different fitted helicities should give the same value  $\Rightarrow$  Can work as a null test for NP

## A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, PC}$$

for each helicity ( $\lambda = +, -, 0$ ) a different  $\Delta C_9^{PC}$  $\rightarrow$  three real (six complex) parameters

If NP in  $C_9$  is the favoured scenario, the three different fitted helicities should give the same value  $\Rightarrow$  Can work as a null test for NP

|                            | $B \to K^* \bar{\mu} \mu / \gamma$ observables                                       |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| $(\chi_{\rm SM}^2 = 8$     | $(\chi_{\rm SM}^2 = 85.15,  \chi_{\rm min}^2 = 39.40;  {\rm Pull_{SM}} = 5.5\sigma)$ |  |  |  |  |
| best fit value             |                                                                                      |  |  |  |  |
| $\Delta C_9^{+, PC}$       | $(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$                                               |  |  |  |  |
| $\Delta C_9^{-, PC}$       | $(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$                                               |  |  |  |  |
| $\Delta C_9^{0, 	ext{PC}}$ | $(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$                                               |  |  |  |  |

Fitted parameters not the same for different helicities but in agreement with each other within  $1\sigma$ 

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, PC}$$

for each helicity ( $\lambda = +, -, 0$ ) a different  $\Delta C_9^{PC}$   $\rightarrow$  three real (six complex) parameters

If NP in  $C_9$  is the favoured scenario, the three different fitted helicities should give the same value  $\Rightarrow$  Can work as a null test for NP

|                            | $B \to K^* \bar{\mu} \mu / \gamma$ observables                                       |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| $(\chi^2_{\rm SM} = 8$     | $(\chi_{\rm SM}^2 = 85.15,  \chi_{\rm min}^2 = 39.40;  {\rm Pull_{SM}} = 5.5\sigma)$ |  |  |  |  |
|                            | best fit value                                                                       |  |  |  |  |
| $\Delta C_9^{+, PC}$       | $(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$                                               |  |  |  |  |
| $\Delta C_9^{-, PC}$       | $(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$                                               |  |  |  |  |
| $\Delta C_9^{0, 	ext{PC}}$ | $(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$                                               |  |  |  |  |

Fitted parameters not the same for different helicities but in agreement with each other within  $1\sigma$ 

| Fit to only BR $(B	o K^*\gamma)$ and $B	o K^*\mu^+\mu^-$ observables (low $q^2$ ) |        |               |  |  |  |
|-----------------------------------------------------------------------------------|--------|---------------|--|--|--|
| Real $\delta C_9$ Hadronic fit; (1) complex $\Delta C_9^{\lambda, PC}$ (6)        |        |               |  |  |  |
| Plain SM (0)                                                                      | (6.0σ) | $(5.5\sigma)$ |  |  |  |
| Real $\delta C_9$ (1)                                                             |        | $(1.8\sigma)$ |  |  |  |

Adding the hadronic parameters improve the fit with less than  $2\sigma$  significance

Strong indication that the NP interpretation is a valid option, although the situation remains inconclusive

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same

| Central. | values | of the | hadronic   | fit | remains | the | same |
|----------|--------|--------|------------|-----|---------|-----|------|
| Comman   | varues | OI UIC | Haul Ollic | III |         | uic | Same |

| Central value of $C_9$ is always the same |                             |                               |                                |  |  |
|-------------------------------------------|-----------------------------|-------------------------------|--------------------------------|--|--|
|                                           | 14 fb <sup>-1</sup> (Syst.) | 50 fb <sup>-1</sup> (Syst./4) | 300 fb <sup>-1</sup> (Syst./4) |  |  |
|                                           | Real $\delta \mathcal{C}_9$ | Real $\delta \mathcal{C}_9$   | Real $\delta \mathcal{C}_9$    |  |  |
| Plain SM                                  | $8.1\sigma$                 | $15.1\sigma$                  | $21.4\sigma$                   |  |  |

- $\triangleright$  Very good fits for  $C_9$  by construction
- $\triangleright$  Good hadronic fits for all three benchmark points of this scenario, but no improvement compared to  $C_9$
- Uncertainties of most hadronic parameters become very large for higher luminosities indicating most of the 18 parameters are not needed to describe the data

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same

| Central values of the hadronic fit remain the same |                             |                          |                               |                          |                                |                          |  |
|----------------------------------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------|--------------------------------|--------------------------|--|
|                                                    | 14 fb <sup>-1</sup> (Syst.) |                          | 50 fb <sup>-1</sup> (Syst./4) |                          | 300 fb <sup>-1</sup> (Syst./4) |                          |  |
|                                                    | Real $\delta C_9$           | Hadronic fit $h_\lambda$ | Real $\delta \mathcal{C}_9$   | Hadronic fit $h_\lambda$ | Real $\delta C_9$              | Hadronic fit $h_\lambda$ |  |
| Plain SM                                           | 7.9σ                        | 7.9σ                     | $14.6\sigma$                  | $22.5\sigma$             | $18.9\sigma$                   | $41.8\sigma$             |  |
| Real $\delta \mathcal{C}_9$                        |                             | $4.0\sigma$              |                               | $17.5\sigma$             |                                | $37.4\sigma$             |  |

- Hadronic fit, gives an improvement with  $4\sigma$  significance compared to fit to  $C_9$  after Run 2 (14 fb<sup>-1</sup>) but situation still remains inconclusive
- After first LHCb upgrade (50 fb $^{-1}$ ) conclusive judgment can be made that NP cannot be established

Global analysis of  $b \to s\ell^+\ell^-$  observables

## Considering all the relevant data on $b \rightarrow s$ transitions

## (117 observables)

- $R_K$ ,  $R_{K^*}$
- BR( $B_{s.d} \rightarrow \mu^+ \mu^-$ )
- BR( $B_s \rightarrow e^+e^-$ )
- BR( $B \rightarrow X_S \mu^+ \mu^-$ )
- BR( $B \rightarrow X_s e^+e^-$ )
- BR( $B \rightarrow K^*e^+e^-$ )
- BR( $B \rightarrow K^{*+}\mu^+\mu^-$ )
- $B_s \rightarrow \phi \mu^+ \mu^-$ : BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$ : BR, ang. obs.
- $B \rightarrow K^{*0} \mu^+ \mu^-$ : BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$ : BR, ang. obs.

| All observables ( $\chi^2_{\rm SM} = 157.3$ ) |                  |                    |                               |  |  |
|-----------------------------------------------|------------------|--------------------|-------------------------------|--|--|
|                                               | b.f. value       | $\chi^2_{\rm min}$ | $\mathrm{Pull}_{\mathrm{SM}}$ |  |  |
| $\delta C_9$                                  | $-0.94 \pm 0.14$ | 126.8              | $5.5\sigma$                   |  |  |
| $\delta C_9^{\mu}$                            | $-0.93 \pm 0.13$ | 115.2              | $6.5\sigma$                   |  |  |
| $\delta C_9^e$                                | $0.84 \pm 0.26$  | 145.5              | $3.4\sigma$                   |  |  |
| $\delta C_{10}$                               | $0.20 \pm 0.22$  | 156.4              | $0.9\sigma$                   |  |  |
| $\delta C_{10}^{\mu}$                         | $0.51 \pm 0.17$  | 146.4              | $3.3\sigma$                   |  |  |
| $\delta C_{10}^e$                             | $-0.78 \pm 0.23$ | 144.3              | $3.6\sigma$                   |  |  |
| $\delta C_{\mathrm{LL}}^{\mu}$                | $-0.53 \pm 0.10$ | 125.4              | $5.6\sigma$                   |  |  |
| $\delta C_{\mathrm{LL}}^{e}$                  | $0.43 \pm 0.13$  | 144.8              | $3.5\sigma$                   |  |  |

### Computations performed using SuperIso public program

(assuming 10% error for p.c.)

- Most favoured scenario is  $\delta C_9^{\mu}$  followed by  $\delta C_{LL}^{\mu}$  ( $\delta C_9^{\mu} = -\delta C_{10}^{\mu}$ ), same hierarchy as pre 2020 LHCb
- $\triangleright$  Significance have increased by  $\sim 1\sigma$  for the most prominent scenarios compared to 2019
- Change in significance mainly due to the recent LHCb analysis of the  $B \to K^* \mu^+ \mu^-$  angular obervables with 4.7 fb<sup>-1</sup> ( $\to$  larger  $\chi^2_{SM}$ )

Using all the relevant data on  $b \rightarrow s$  transitions



- Most favoured scenario is  $\delta C_9^{\mu}$  followed by  $\delta C_{LL}^{\mu}$  ( $\delta C_9^{\mu} = -\delta C_{10}^{\mu}$ ), same hierarchy as pre 2020 LHCb
- $\triangleright$  Significance have increased by  $\sim 1\sigma$  for the most prominent scenarios compared to 2019
- ► Change in significance mainly due to the recent LHCb analysis of the  $B \to K^* \mu^+ \mu^-$  angular observables with 4.7 fb<sup>-1</sup> (→ larger  $\chi^2_{SM}$ )
  - → smaller experimental uncertainties

Using all the relevant data on  $b \rightarrow s$  transitions



- Most favoured scenario is  $\delta C_9^{\mu}$  followed by  $\delta C_{LL}^{\mu}$  ( $\delta C_9^{\mu} = -\delta C_{10}^{\mu}$ ), same hierarchy as pre 2020 LHCb
- $\triangleright$  Significance have increased by  $\sim 1\sigma$  for the most prominent scenarios compared to 2019
- Change in significance mainly due to the recent LHCb analysis of the  $B \to K^* \mu^+ \mu^-$  angular observables with 4.7 fb<sup>-1</sup> ( $\to$  larger  $\chi^2_{SM}$ )

Using all the relevant data on  $b \rightarrow s$  transitions

**Multi-dimensional fit:**  $C_7$ ,  $C_8$ ,  $C_9^{\ell}$ ,  $C_{10}^{\ell}$ ,  $C_S^{\ell}$ ,  $C_P^{\ell}$  + primed coefficients (20 d.o.f. freedom)

| All observables with $\chi^2_{\rm SM} = 157.28$                        |                                            |                             |                            |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------|-----------------------------|----------------------------|--|--|--|
| $(\chi^2_{\min} = 100.34; \boxed{\text{Pull}_{\text{SM}} = 4.3\sigma}$ |                                            |                             |                            |  |  |  |
| δι                                                                     | $C_7$                                      | $\delta C_8$                |                            |  |  |  |
| 0.05 =                                                                 | ± 0.03                                     | $-0.71\pm0.43$              |                            |  |  |  |
| δί                                                                     | 07                                         | δ                           | 0%                         |  |  |  |
| -0.01                                                                  | $\pm 0.02$                                 | $-0.09 \pm 0.86$            |                            |  |  |  |
| $\delta C_9^{\mu}$                                                     | $\delta C_9^e$                             | $\delta C_{10}^{\mu}$       | $\delta C_{10}^e$          |  |  |  |
| $-1.11 \pm 0.19$                                                       | $-6.69\pm1.37$                             | $0.08 \pm 0.25$             | $3.97 \pm 4.99$            |  |  |  |
| $\delta C_9^{\prime\mu}$                                               | $\delta C_9^{\prime e}$                    | $\delta C_{10}^{\prime\mu}$ | $\delta C_{10}^{\prime e}$ |  |  |  |
| $0.18 \pm 0.35$                                                        | $1.84\pm1.75$                              | $-0.13\pm0.21$              | $0.05 \pm 5.01$            |  |  |  |
| $C^{\mu}_{Q_1}$                                                        | $C_{Q_1}^e$                                | $C^{\mu}_{Q_2}$             | $C_{Q_2}^e$                |  |  |  |
| $-0.07 \pm 0.12$                                                       | $0.07 \pm 0.12$ $-1.52 \pm 0.98$           |                             | $-4.36\pm1.46$             |  |  |  |
| $C_{Q_1}^{\prime\mu}$                                                  | $C_{Q_1}^{\prime\mu}$ $C_{Q_1}^{\prime e}$ |                             | $C_{Q_2}^{\prime e}$       |  |  |  |
| $0.05 \pm 0.12$                                                        | $-1.40\pm1.56$                             | $-0.17\pm0.15$              | $-4.33\pm2.33$             |  |  |  |

- Several Wilson coefficients in the electron sector were previously undetermined in the 20-dimension fit now all WC are constrained (some still weakly)  $\leftarrow$  updated upper bound on  $B_S \rightarrow e^+e^-$  [LHCb 2003.03999]
- $\triangleright$  Significance of the fit has increased by  $\sim 1\sigma$  compared to our 2019 fit

- ☐ Significance of tensions depend on assumptions for power corrections
- ☐ Statistical comparison favours NP, however situation remains inconclusive
- ☐ Future data (after the first LHC upgrade) can give strong indications whether NP better describe the anomalies or hadronic contributions
- $\square$  Most favoured NP scenario still  $C_9^{\mu}$  followed by  $C_{LL}^{\mu}$  no change compared to pre-2020
- $\square$  Increase of ~1 $\sigma$  for the favoured NP scenarios

Thank you!

Backup

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[ \sum_{i=1\dots 6} \frac{C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu)}{\bar{\ell}} \right]$$

$$\bar{\ell}_{\ell}$$

$$\bar{B}_{\ell}^{C_{1,\dots,6}} (\bar{K}^*)$$

$$\bar{B}_{\ell}^{C_{1,\dots,6}} (\bar{K}^*)$$

non-local effects: in general "naïve" factorization not applicable

$$\underbrace{\frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[ \underbrace{Y(q^2) \tilde{V}_{\lambda}}_{\text{fact., perturbative}} + \underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{non-fact., QCDf}} + \underbrace{h_{\lambda}(q^2)}_{\text{power corrections,}} \right]$$

factorisable contributions: 7 independent form factors  $\tilde{V}_{+,0}$ ,  $\tilde{T}_{+,0}$ ,  $\tilde{S}$ 

[Khodjamirian et al. '10, Bharucha et al. '15, Gubernari et al. '18]

## Helicity amplitudes:

$$H_{V}(\lambda) = -i \, N' \left\{ (C_{9}^{\text{eff}} - C_{9}') \tilde{V}_{\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[ \frac{2 \, \hat{m}_{b}}{m_{B}} (C_{7}^{\text{eff}} - C_{7}') \tilde{T}_{\lambda}(q^{2}) - 16\pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\}$$

$$h_{\pm,[0]} = \left[ \sqrt{q^{2}} \times \right] \left( h_{\pm,[0]}^{(0)} + q^{2} \, h_{\pm,[0]}^{(1)} + q^{4} \, h_{\pm,[0]}^{(2)} \right) \delta H_{V}^{PC}(\lambda = \pm) = i \, N' \frac{m_{B}^{2}}{q^{2}} \, 16\pi^{2} h_{\pm}(q^{2}) = i \, N' \frac{m_{B}^{2}}{q^{2}} \, 16\pi^{2} \left[ h_{\pm}^{(0)} + q^{2} \, h_{\pm}^{(1)} + q^{4} \, h_{\pm}^{(2)} \right] \delta H_{V}^{PC}(\lambda = 0) = i \, N' \frac{m_{B}^{2}}{q^{2}} \, 16\pi^{2} h_{0}(q^{2}) = i \, N' \frac{m_{B}^{2}}{q^{2}} \, 16\pi^{2} \left[ \sqrt{q^{2}} \left( h_{0}^{(0)} + q^{2} \, h_{0}^{(1)} + q^{4} \, h_{0}^{(2)} \right) \right]$$

## Fit to $B o K^* \mu^+ \mu^-$ angular observables

Comparison of fit to  $B \to K^* \mu^+ \mu^-$  angular observables with Run 1 data (3 fb<sup>-1</sup>) compared to Run + 2016 data (4.7 fb<sup>-1</sup>)

| Only $B	o K^*\mu^+\mu^-$ angular observables |       |                             |                                                    |  |  |
|----------------------------------------------|-------|-----------------------------|----------------------------------------------------|--|--|
| $\chi^2_{SM}$                                |       | $\chi^2_{\min}(\delta C_9)$ | $\mathrm{Pull}_{\mathrm{SM}}(\delta\mathcal{C}_9)$ |  |  |
| Run 1                                        | 57.25 | 43.08                       | $4.0\sigma$                                        |  |  |
| Run 1 + 2016                                 | 81.07 | 52.27                       | $5.4\sigma$                                        |  |  |

| $B \to K^* \bar{\mu} \mu / \gamma$ observables; low $q^2$ bins up to 8 GeV <sup>2</sup> |                                                                        |                                                                            |                                                                 |                                                                   |                                                                                |                                                                          |                                                                    |                                                                     |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| nr. of free<br>parameters                                                               | $\begin{pmatrix} 1 \\ \operatorname{Real} \\ \delta C_9 \end{pmatrix}$ | $\begin{pmatrix} 2 \\ \text{Real} \\ \delta C_7, \delta C_9 \end{pmatrix}$ | $\begin{pmatrix} C_{\text{omp.}} \\ \delta C_{9} \end{pmatrix}$ | $ \begin{pmatrix} Comp. \\ \delta C_7, \delta C_9 \end{pmatrix} $ | $\begin{pmatrix} \text{Real} \\ \Delta C_9^{\lambda, \text{PC}} \end{pmatrix}$ | $\begin{pmatrix} \text{Comp.} \\ \Delta C_9^{\lambda, PC} \end{pmatrix}$ | $\begin{pmatrix} \text{Real} \\ h_{+,-,0}^{(0,1,2)} \end{pmatrix}$ | $\begin{pmatrix} \text{Comp.} \\ h_{+,-,0}^{(0,1,2)} \end{pmatrix}$ |
| 0 (plain SM)                                                                            | $6.0\sigma$                                                            | $5.6\sigma$                                                                | $5.8\sigma$                                                     | $5.4\sigma$                                                       | $5.4\sigma$                                                                    | $5.5\sigma$                                                              | $5.0\sigma$                                                        | $4.7\sigma$                                                         |
| 1 (Real $\delta C_9$ )                                                                  | _                                                                      | $0.5\sigma$                                                                | $1.5\sigma$                                                     | $1.2\sigma$                                                       | $0.6\sigma$                                                                    | $1.8\sigma$                                                              | $1.1\sigma$                                                        | $1.5\sigma$                                                         |
| 2 (Real $\delta C_7, \delta C_9$ )                                                      | _                                                                      | _                                                                          | _                                                               | $1.4\sigma$                                                       | _                                                                              | _                                                                        | $1.3\sigma$                                                        | $1.6\sigma$                                                         |
| 2 (Comp. $\delta C_9$ )                                                                 |                                                                        |                                                                            |                                                                 | $0.8\sigma$                                                       |                                                                                | $1.7\sigma$                                                              |                                                                    | $1.4\sigma$                                                         |
| 4 (Comp. $\delta C_7, \delta C_9$ )                                                     | _                                                                      | _                                                                          | _                                                               | _                                                                 | _                                                                              | _                                                                        | _                                                                  | $1.5\sigma$                                                         |
| 3 (Real $\Delta C_9^{\lambda, PC}$ )                                                    | _                                                                      | _                                                                          | _                                                               | _                                                                 | _                                                                              | $2.2\sigma$                                                              | $1.4\sigma$                                                        | $1.7\sigma$                                                         |
| 6 (Comp. $\Delta C_9^{\lambda, PC}$ )                                                   | _                                                                      | _                                                                          | _                                                               | _                                                                 | _                                                                              | _                                                                        | _                                                                  | $0.1\sigma$                                                         |
| 9 (Real $h_{+,-,0}^{(0,1,2)}$ )                                                         | _                                                                      |                                                                            |                                                                 |                                                                   |                                                                                |                                                                          |                                                                    | $1.5\sigma$                                                         |

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same



- $\triangleright$  Hadronic fit, gives an improvement with 4σ significance compared to fit to  $C_9$  after Run 2 (14 fb<sup>-1</sup>) but situations still remains inconclusive
- After first LHCb upgrade (50 fb $^{-1}$ ) conclusive judgment is possible

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same



- $\triangleright$  Hadronic fit, gives an improvement with 4σ significance compared to fit to  $C_9$  after Run 2 (14 fb<sup>-1</sup>) but situations still remains inconclusive
- After first LHCb upgrade (50 fb $^{-1}$ ) conclusive judgment is possible

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same



- $\triangleright$  Hadronic fit, gives an improvement with 4σ significance compared to fit to  $C_9$  after Run 2 (14 fb<sup>-1</sup>) but situations still remains inconclusive
- After first LHCb upgrade (50 fb<sup>-1</sup>) conclusive judgment is possible (fitted parameters no longer consistent with zero at  $1\sigma$  level)

LHCb projections for  $B \to K^* \mu^+ \mu^-$  with 14, 50 and 300 fb<sup>-1</sup> luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (p-value  $\approx 0$ )

We assume two extreme scenarios, adjusting the experimental data such that

 $\square$  Central value of  $C_9$  remains the same



- $\triangleright$  Hadronic fit, gives an improvement with 4σ significance compared to fit to  $C_9$  after Run 2 (14 fb<sup>-1</sup>) but situations still remains inconclusive
- After first LHCb upgrade (50 fb<sup>-1</sup>) conclusive judgment is possible (fitted parameters no longer consistent with zero at  $1\sigma$  level)







