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Muon beams for particle physics

= Muon as elementary lepton ~200 times heavier than electrons is an excellent
particle for a collider

= Avoiding a large QCD background known in hadron colliders

= Offering a full CM energy for creating new states (in contrary to hadron
colliders)

= Rate of emission of synchrotron radiation is highly suppressed -> allows
compact collider facility

= This also suppresses beamstrahlung -> allows preserving the high quality beam

= Large m, provides large coupling to the Higgs mechanism. Resonant Higgs
production in the s-channel is possible.

= Muon beams are also important
= Anomalous magnetic moment (g-2) — a possible sign of BSM physics

= Searches for Lepton Flavour Violation -> complementary test of SM at a very
high mass scale

= High quality neutrino source -> nuSTORM and the Neutrino Factory
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500 } Delahaye et al, arXiv:1901.06150

Muons Collider Physics Reach

Energy at which
cross-section is equal

Assuming equal
Feynman amplitude

Assuming factor 10
enhancement in pp

= Muon Collider with CM energy similar to the current LHC is

equivalent to 100 TeV Proton Collider (FCC-HH)
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Muon Collider and Neutrino Factory
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Challenges:
 Muon beams are unstable (muon lifetime at rest ~2.2 us)

« Muons are produced as tertiary beam (p—a—pu)

« Use ionization cooling, which is the only technique fast enough!
» Use high power proton driver
» Develop rapid accelerators
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What is Muon lonization Cooling?

oY ilo¥=dlc

dE/dx . multiple scattering re-acceleration |
p B 1

L

Energy loss In the'absorbers reduces both p, and p;

Scattering heats the beam

RF cavities restore p, only

The net effect is the reduction of beam emittance — cooling

« strong focusing, low-Z absorber material and high RF
gradient are required

Cooling den _ _ 1 [dEu\ €n 1 B1(0.014GeV)”
Equation; ds g2\ ds [ E, B3> 2E,m,Lg

Cooling Heating

de /ds is the rate of change of normalised-emittance within the absorber;B, E, and m, the muon velocity, energy, and
mass, respectively; B, is the lattice betatron function at the absorber; L is the radiation length of the absorber material.
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Muon Ionization Cooling Experiment
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= Demonstrate high acceptance, tight focussing solenoid lattice

= Demonstrate integration of liquid hydrogen and lithium hydride absorbers
= Validate details of material physics models

= Demonstrate ionization cooling principle and amplitude non-conservation
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MICE Muon Beam line

MICE Muon Beam (MMB)

= Muon momenta between 120 and 260 MeV/c
= Muon emittance between 2 mm and 10 mm
= Pion impurity suppressed at up to 99 % level

= The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon lonization Cooling Experiment, JINST
7, P05009 (2012)

= Characterisation of the muon beams for the Muon lonisation Cooling Experiment, EPJ C 73, 10 (2013)
= Pion contamination in the MICE muon beam, JINST 11 (2016)
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Magnets

% Spectrometer

- SolenOId

.' Module

= Spectrometer solenoids upstream and
downstream

= 400 mm diameter bore, 5 coil
assembly

= Provide uniform 2-4 T solenoid field
for detector systems

= Match coils enable choice of beam
focus

\ R ES . Focus coil module provides tight focus
’ on absorber

= Dual coil assembly - possible to flip
polarity to avoid build up of
canonical angular momentum
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Absorbers

= 65 mm thick lithium hydride absorber

= 350 mm thick liquid hydrogen absorber

= Contained in two pairs of 150-180 micron
thick Al windows

= 45° polythene wedge absorber for
longitudinal emittance studies

=
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Scintillating Fibre trackers

= Tracks form a helix in spectrometer solenoids
= Position of particles measured by 5 stations of scintillating fibres

= Reconstruct helix in two phases
= Pattern recognition to reject noise
= Kalman filter to get optimal trajectory
= Yields momentum and position of particles at reference plane

= Ascintillating fibre tracker for MICE, NIM A 659, 2011
m  The reconstruction software for the MICE scintillating fibre trackers, JINST11, 2016
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Time-of-Flight, Chkov and Calorimetry

= High precision Time-of-Flight detectors

= Comparison of time-of-Flight with momentum
allows rejection of impurities

= Threshold Cherenkov detectors provide rejection of
impurities near the relativistic limit

= KLOE Light and Electron Muon Ranger provide
calorimetry and rejection of decay electrons in
downstream region

= Electron-Muon Ranger (EMR) Performance in the MICE Muon
Beam, JINST 10 P12012 (2015)

m  The design and commissioning of the MICE upstream time-of-

flight system, NIM A 615 (2010) 14-26 Reconsiructed Data
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Measurement of Beam Properties

; £
= MICE individually measures %
every particle 2 5
= Accumulate particles intoa -
beam ensemble £ =
= Can measure beam properties .. L e |
with unprecedented precision £ . | mime. | oaseon Py Mev/c]
: 2 S e e
= E.g. coupling of x-y from o b TR p R | MICE
SOIenOId fl€|dS =700 50 6X5|;umr11io] 160 =50 F;([Nsl'c:sv}bglqbo = ySIO[m1r[:’0]] ’ 2

First particle-by-particle measurement of emittance in the Muon lonization Cooling Experiment,
Eur. Phys. J. C 79, 257 (2019)

Im erial COIIe e Science & Technology Facilities Council
N J % ISIS J. Pasternak, ICHEP2020

London 12



Amplitude
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SIS

Normalise phase space to RMS
beam ellipse

= Clean up tails

Amplitude is distance of muon
from beam core

= Conserved quantity in normal
accelerators
A =< R*(u,(u))

where Ris the normalised

distance in phase space:

Rg(u, v)=(u-— V)T v (u—v)
Ionization cooling reduces
transverse momentum spread

= Reduces amplitude

Mean amplitude ~ “"RMS
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= No absorber — decrease in number of core muons
= With absorber — increase in number of core muons
= Cooling signal Nature volume 578, pages 53-59 (2020)
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Ratio of core densities — ‘Flip Mode'
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= Ratio of CDF

= Core density increase for LH2 and LiH absorber — cooling
= More cooling for higher emittances
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.Results in ‘Solenoid Mode’

Cumulative Amplltude Ratios
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Transverse Emittance Change in MICE ‘Solenoid Mode’ with Muon
lonization Cooling — T. Lord, ICHEP2020, Poster/56
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Normalized Emittance reduction in ‘Flip Mode’
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Wedge Absorber In action
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Reverse emittance exchange effect
Is simulated in MICE with wedge
absorber causing
* _decrease in longitudinal phase
space density with
* increase in 4D transverse
phase space density
Data analysis — work in progress
This will help to understand
longitudinal cooling
« Essential for the Muon Collider

Emittance exchange in MICE,
C. Brown, ICHEP2020,
Poster/55
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Summary

= Muon cooling is last “in-principle” challenge for neutrino factory or
muon collider R&D

= MICE has measured the underlying physics processes that govern
cooling

= MICE has made an unprecedented single particle measurement of
particle trajectories in an accelerator lattice

= MICE has made first observation of ionization cooling
= Nature volume 578, pages 53-59 (2020)

= Opens the door for high energy muon accelerators as a probe of
fundamental physics
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Normalised density — ‘Flip Mode’
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= R, is ratio of CDF

= Core density increase for LH2 and LiH absorber — cooling
= More cooling for higher emittances
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R&D Programme

= MERIT

= Demonstrated principle of liquid Mercury
jet target

s MuCool Test Area

= Demonstrated operation of RF cavities in
strong B-fields

= EMMA

= Showed rapid acceleration in non-scaling
FFA

= MICE
= Demonstrate ionization cooling principle

= Increase inherent beam brightness —
number of particles in the beam core

London
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