

Transverse Emittance Change in MICE 'Solenoid Mode'

Tom Lord, University of Warwick
On behalf of the MICE Collaboration

The MICE Apparatus

with Muon Ionization Cooling

MICE was designed to observe and study muon ionization cooling in a tertiary muon beam (Fig. 1)

- Track reconstruction gives position and momentum of muons upstream (US) and downstream (DS) of absorber
- Muon beam constructed as ensemble of individually measured particles
- Data collected over range of input-beam emittance for various absorber configurations:
- 22-L liquid hydrogen vessel (LH₂) in empty and full states
- 65 mm lithium hydride disk (LiH)
- Empty drift space (no absorber)

Event Selection

- Single track US and no more than one track DS
- Time-of-flight (TOF) consistent with 140 +/- 5 MeV/c muon
- Tracks contained within fiducial volume
- Good chi-squared per degree of freedom for track reconstruction

Fig. 1 — MICE layout: (red) magnet coils, (blue) tracker stations, time-of-flight (TOF) detectors, Cherenkov (Ckov) detectors, lead-scintillator sandwich (KL) detector, Electron-Muon Ranger (EMR)

Fig. 2 – (top) z-component of solenoid field (B_z) vs z for (solid) 'solenoid' mode and (dashed) 'flip' mode; (bottom) 'solenoid' mode beam envelope in x for four emittance values, illustrating well-constrained within tracker. Blue dashed lines indicate tracker station locations and absorber centre. Hall probes positioned at 0.16 m radial displacement.

'Solenoid Mode' vs 'Flip Mode'

MICE cooling channel operated in both 'Solenoid' and 'Flip' modes (Fig. 2)

- Solenoid mode: on-axis magnetic field points in same direction throughout channel
- Flip mode: field reverses direction across absorber

Due to energy loss within absorber, angular momentum induced by radial field in solenoid fringe US is not cancelled DS → 2 choices:

- Alternate field direction at every absorber in channel

 costly, but prevents build-up of canonical angular
 momentum & improves cooling performance [1,2],
 or
- Flip field only occasionally, solenoid mode elsewhere

MICE has demonstrated ionization cooling in flip mode [3], talk 53, poster 54; cooling performance in solenoid mode presented here

Fig. 3 — (top) Momentum and (bottom) position in (left) x and (right) y for LH₂-empty and -full at 6 and 10 mm emittances

Fig. 3 – (top) Momentum and (bottom) position in (left) x and (right) y for LH_2 -empty and

Observation of Cooling

• 4D normalised transverse emittance of a beam, ϵ_{4D} , calculated from determinant of covariance matrix, Σ , in x, p_x , y, p_y as

$$\epsilon_{4D} = \frac{\sqrt[4]{|\Sigma|}}{m_{\mu}}$$

• Single-particle amplitude at $p=(x,p_x,y,p_y)$ defined as

$$A_{\perp}=\epsilon_{4D}~(p-\bar{p})^T\Sigma^{-1}(p-\bar{p})~,$$
 with \bar{p} the centre of the distribution

- Estimates emittance of a beam characterised by ellipse passing through point p
- Cumulative amplitude distributions, integrated from zero, display particle migration in phase-space and density change in the beam's core

Increase (decrease) of small (large) amplitudes DS relative to US implies *cooling*: DS/US Ratio > 1. Opposite effect shows *heating* (Fig. 4)

- 4 mm ≈ equilibrium emittance neither heating nor cooling observed
- 3 mm beam: *heating* observed
- 6 mm and 10 mm beams: *cooling* observed!

Solenoid Mode Amplitude Distributions

Fig. 4 – Normalised amplitude distributions for (top left) no absorber and LiH, (top right) LH_2 empty and LH_2 full, and (bottom) ratios of their corresponding cumulative distributions. Coloured bands show combined statistical and systematic errors

Cooling!

References [1] M. Bogomilov et al., Lattice design and expected performance of the Muon Ionization Cooling Experiment

demonstration of ionization cooling, Phys. Rev. Accel. Beams 20 (**2017**) 063501

[2] R. Fernow and R. Palmer, Solenoidal ionization cooling lattices, Phys. Rev. ST Accel. Beams 10 (**2007**) 06400

[3] M. Bogomilov et al., Demonstration of cooling by the Muon Ionization Cooling Experiment, Nature 578 (**2020**) 53