Muon Trigger using Deep Neural Networks accelerated by FPGAs

Seulgi Kim, Jason Lee, Inkyu Park, Youngwan Son, Ian James Watson, Seungjin Yang

ICHEP 2020 - 29th Jul 2020

Muon Trigger with FPGAs

서울시립대학교 UNIVERSITY OF SECUL

ICHEP 2020

Introduction

Motivation

• Trigger decision can be treated as image segmentation problem in Computer Vision, and Convolutional Neural Network(CNN) is a powerful tool in segmentation problem.

• Our plan is to increase trigger accuracy with CNN based segmentation, while reducing latency by FPGA to enable online use.

Dataset Info.

We aim for generic muon detectors. In this study, the chamber has 6 layers, with layer consisting of 384 strips in the x axis and segmented in 8 partitions in the y axis.

• A chamber image made up of 6*8*384 voxels, and each voxel is binary (0 or 1). When the current flows on a strip, a voxel turned 1 from 0.

Muons are ranging from $p_{\rm T}$ 5~100 GeV.

Youngwan Son (UOS)

Muon Trigger with FPGAs

Fig2. Visualization of chambers with hits

Fig1. Detector we aim for

ICHEP 2020

2/4

Method

Training CNN

• Convolution kernels extract the visual features of muon hits so that model output close to ground truth.

- Loss weighted binary cross entropy loss
 - WCE $(p, \hat{p}) = -(\beta p \log(\hat{p}) + (1 p)\log(1 \hat{p}))$
- Keras with tensorflow 1.14 for the backend.

Deploying on FPGA

Quantization ----

 Changing float 32→int 8 for lighter model

Youngwan Son (UOS)

• Quantization for smaller model size and faster computation.

Layer optimization

Deleting batch normalization layer and sigmoid layer

- Batch normalization layer is used for training, not inferencing.

- Sigmoid layer can be replaced by some appropriate threshold.

Muon Trigger with FPGAs

Fig3. CNN based track segment reconstruction

Efficiency & Fake rate

- About 300,000 images are used for test.
- If True Positive Rate (TP/P) of a image is over 0.6, we define it as a "matched".
- In efficiency plot, $0 \sim 5 \text{GeV}$ is empty, so the number of samples in first bin is half of others.

Throughput

- Throughput is the rate at which something is processed.
- and the buffer sizes are $1, 2, 4, \dots, 2048$ from left.
- Only $1 \sim 6$ buffer size is allowed for FPGA now.

Youngwan Son (UOS)

• On Fig5, throughput was measured in processed images per second (FPS),

Muon Trigger with FPGAs

X Definitions of efficiency and fake rate are on postsers.

CNN based trigger - compressed

CNN based trigger - compressed

Fig5. Throughput according to processors

ICHEP 2020

4/4