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FCC-ee will produce huge statistics of Zand Ws and millions of Higgs and tops.
This is an opportunity to perform extremely precise measurements of many electroweak
observables, such as mass and width of the Z, Z pole asymmetries, the W, & top quark masses,

for Z line shape v=99.5, 103.5, 106.5/107.5

and W W threshold v=178.5, 184.5

In order to avoid extrapolation errors, a set of 200 ‘pilot’ bunches
— having no colliding counterpart -- will be stored at the
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and Higgs mass and width. These quantities are sensitive to new physics up to 10-100 TeV '”'2: N R £ A S beginning of fills with polarization wigglers ON, for about 1.5
(decoupling) or possibly much more (non decoupling). -0.4;— --------------------------------------------------------------------------------------------------- hour to deVEIOp about 5-10% transverse pOIarization, then, after
This also enables to perform e+e- = H s-channel production measure the electron Yukawa couling. 0.6f A (é+e- '} um_)' a first energy calibration is performed, the full luminosity run will
= FB . . . . .
This requires high luminosity and an extremely precise knowledge of the 0 g et e v B R B B Qi cempiee ekl Gellloraioms (LD M) e s Ees SUnEIEs.
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beam energy, UNIQUE TO THE MODERN CIRCULAR e+ e- and COLLIDERS 155 ot e ey, Goal precisions; uncertainties on
Is (GeV) m,,I',: £100 keV, m,, : £300 keV - or better.
Beam Energy measurement by Resonant depolarization Resonant depolarization Beam energy uncertainties
o . _ \ o A visible depolarization can be realized with a transverse Absolute: The proportionality between spin tune and
This is a well knovyp method, which has b.een used to measure particle mas.f,es such as the J/y a.Noy05|b|rsk, the kicker excited at a frequency in resoance with the beam energy is rigourously true only if the ring is
T mass at IHEP Beijing, the Y mass at Doris (DESY), the Z mass at LEP. It requires transverse polarization of the beams spin precessmn frequency a.k.a. spin tune v oerfectly planar. A certain number of effects
. . . . . (- _ ge = 2 EBeam _ EBeam resulting from imperfections in the ring can affect
Beam polarlzatlon Polarization ngglers Y T Tmee? T 0.4406486(1) this relation and bias the beam energy calibration.
_ i} : The polarization time at the Z is slow, (250 hrs E Fast sweepin _ _ , ita i i i
In FCC-ee the e+ a.nd.e beams polarize naturally P ( ) Fustsweeping The spin tune is proportional to Other effects such as op-p05|te sign dispersion at the
along the magnetic field by 'Sokolov.-Ternov effect. | o ot e ey the beam energy IRs also need to be considered.
Excellent levels of asymptotic polarization are Tp = ( R = 6"“.".‘)
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X such units per beam with a precision of £50 keV each time, 5 X worse at W. : : , :
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.| A . BT T [ e | s R I e o e on relative uncertainties between the scan points.
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The electron or positron beam polarization can be measured with a compton backscattering polarimeter. This Acr. AEcy = —— b . AD*
: : 2 Y
technique was already used at LEP, where only the backscattered photons were detected. The FCC-ee A 2 oy Ev
polarimeter, designed by Muchnoy, proposes to make use also of the recoil electron to increase the sensitivity. E+ = Eg*+ 0.5Ag 2Agq; - Agge = 1.5Ags Since the two beams C|rculate in two independent
B ; 4 Titere vl o i el meens, G 6o and @, ustis e E—)=EEO+E (_).EséfFE- A(TA— o?igs ) rings it is unavoidable that there will be a residual
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X (.nip:d.on'po.no i i dispersion suppressor magnet, as the beam enters A CE. at half RF oppo§|te sign dispersion in both x andy planes. This
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ellipse of scottered@ < ABS =0 up to 0.62 MeV
z 2 RESULTS and CONCLUSIONS
y x! - energy E, around ring is determined by magnetic fields The impact on the energy calibration systematics on
| : =»same for colliding or non-colliding beams the key line shape measurements are as follows.
The polarimeter is sketched above. The e-y IP is situated upstream of a ring magnet with suitable optics, so that -- measured by resonant depolarization _ AE bs) | AE E
the b . . — . . M i o Gae e & ot @ Quantity cm (@bs) | AEcy, (ptp) | Energy
e backscattered photon beam is centered on X, in the direction of the original beam, while the recoiling 100 keV
it
electrons are defelected by the magnet and measured between X, (the unscattered beam) and X, (for the (unit)
slowest electrons). For a 45 GeV beam and a distance of the detection plane of 100m from the e-y IP, X, - X, = 10 1] 45:6 GeV |
638 mm. The end point moves by 2.4 microns for a variation of energy of 10>. The polarimeter thus acts as a : AT : m; (keV) 4 100 28 N
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N T o . ko . - . = | . ; measured/monitored in expt, using e+e- — U+ U- events
N e . T Z 5 longitudinal momentum shift and spread (Janot) . .
T - —— S S S-S R mentum shift and s There remains much to do:
) RO RN SO MO OO N, NSO S oo e i S e 2 2 [ -- integration of spin code in optics codes
Y NSRS OO TR R RPN SO FRSRRE SO ' R o I -- diagnostics to measure directly beam-beam offsets and local
U 2 R T B N o N A I B F| T aeymmety = =015 . dispersion to control Opp. Sign Vert. Dispersion
S T | T N . N D - L wm 100 /"f m\‘\\ -- improve precision at the W threshold to match 200keV stat.
< . : : : : : - -- Wiggler implementation
The measurement of polarization will be made, as in LEP, by observing changes in the recoil electron and photons, . }ﬂﬂfﬂ H&E?& _ further reduction of point to point errors
upon reversing the circular polarization of the incoming laser beam. The beam spot of the photon beam will move - .- energy model, logging and diagnostics
by about £ P x1.4 mm at a distance of100 m. If the polarization is small this movement can be mistaken with a o) NS FURRY SO PO 7 SUS FUREE R T S — -- spectrometer stability
movement of the beam. The change for the electron recoil is more distinctive: the change in the relative i o -- expt magnet and momentum scale stability
population of the outer ring of the electron recoil spot is unmistakable. In 5 min at the Z the energy spread and (E," - E,") SRR
- - - - - oo --alu 1zatl | u :
The beam (transverse or longitudinal) polarization can be measured with a precision of £1% every second. can be measured to + 40 keV. seing P
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