

FCC-ee beam polarization and centre-of-mass energy calibration

arXiv:1909.12245

Beam energy determination with 10⁻⁶ accuracy

HAVING WAT WE NEED

e+ and e- beam polarization will be available up to at least the W pair threshold

polarization wigglers will speed up polarization at the start of fills, for ~200 (out of 16500) bunches/beam

RF Kickers similar to LHC will have the required qualities

Alain Blondel EPOL at FCC-ee

Laser polarimeter and spectrometer (one for each e+ and e- beams) measure both recoil photon spot and scattered electrons and positron

From beam energy to E_{CM}

$$\sqrt{s} = 2\sqrt{E_{\rm b}^{+}E_{\rm b}^{-}}\cos{\alpha/2}, \approx E_{\rm b}^{+} + E_{\rm b}^{-}$$

Energy gain (RF) = losses in the storage ring Synchrotron radiation (SR) beamstrahlung (BS)

$$\Delta_{RF} = 2\Delta_{SRi} + 2\Delta_{SRe} + 2\Delta_{BS}$$
 at the Z (O of mag.):

$$\Delta_{SR} = 2\Delta_{SRi} + 2\Delta_{SRe}$$
 =36 MeV

$$\Delta_{\rm SRe}$$
 - $\Delta_{\rm SRi}$ $\approx \alpha/2\pi \, \Delta_{\rm SR}$ = 0.17 MeV

$$\Delta_{\rm BS}$$
 = 0 up to 0.62 MeV

the average energies E₀ around the ring are determined by the magnetic fields

- → same for colliding or non-colliding beams
- -- measured by resonant depolarization
- -- can be different for e⁺ and e⁻ Affain Blonde | Physics at the FCCs

Physics: scan points and output quantities

Z line shape \rightarrow m_Z and $\Gamma_{\rm Z}$

at the same time $A_{FB}^{\mu\mu}(\sqrt{s})$

 \rightarrow sin² θ_{W}^{eff} , α_{QED} (m_z)

Use half integer spin tune energies for Z line shape, lucky: v=99.5, 103.5, 106.5/107.5 and W W threshold v=178.5, 184.5

for the Higgs, bad luck! $v = m_H/2/.4406486 (1) = 141.95$ --too close to integer for polarizazion— \rightarrow 141.48 for e+ and 142.47 for e-

200 'pilot' bunches will be stored at the beginning of fills with polarization wigglers ON, for about 1 hour to develop about 5-10% transverse polarization.

After a first energy calibration, the full luminosity run will comprise regular calibrations (1/10 min) on pilot bunches.

WW threshold \rightarrow m_W and $\Gamma_{\rm W}$

Higgs s-channel production need to know $E_{cm} \, \sigma_{ECM}$

Beam energy uncertainties

<u>Absolute:</u> The proportionality between spin tune and beam energy is rigourously true only if the ring is perfectly planar. A certain number of effects resulting from imperfections in the ring can affect this relation and bias the beam energy calibration. <u>Other effects such as opposite sign dispersion at the IRs also need to be considered and tackled</u>

At this point 100keV (300keV) uncertainty a Z (WW) can be expected, but experiments can be devised to reduce it. This mostly affects the Z and W masses.

Relative ptp (Energy point to Energy point): The Z width, and $A_{FB}^{\mu\mu}$ depend on relative uncertainties between the scan points. When considering only errors that can be different between scan points a relative error of ~ ± 20 keV at the Z is inferred. Experimental verification either with the polarimeter-spectrometer or using muon pairs can be made at ± 40 keV on a daily basis.

<u>Energy spread.</u> knowledge of energy spread is critical for the Z width measurement and fo the s-channel Higgs production. It is extracted from the muon pairs with sufficient precision.

A thousand recipes to use up dimuon events at the FCC-ee

P. Janot

E,P conservation \rightarrow allow E_{CM} and P_{CM} on event-per-event basis.

10⁶ evts/5 min/expt @Z

→ Determine ECM, ECM spread and collision angle, in addition to $A_{FB}^{\mu\mu}(\sqrt{s})$! (also: control of ISR spectrum)

The measurement of CM boost distribution allows control of beam energy spread (including beamstrahlung), as well as the difference between e+ vs. e- energies.

±2.5 MeV ECM meast in 30 seconds of data ~40keV per day at each scan point....

challenge for QED calculations!

Main results and .. more to do!

Table 15. Calculated uncertainties on the quantities most affected by the centre-of-mass energy uncertainties, under the final systematic assumptions.

	statistics	$\Delta \sqrt{s}_{\rm abs}$	$\Delta\sqrt{s}_{\mathrm{syst-ptp}}$	calib. stats.	$\sigma_{\sqrt{s}}$
Observable			$40\mathrm{keV}$	$200\mathrm{keV}/\sqrt{N^i}$	$85 \pm 0.05 \mathrm{MeV}$
m _Z (keV)	4	100	28	1	_
$\Gamma_{\rm Z}~({\rm keV})$	4	2.5	22	1	10
$\sin^2 \theta_{\rm W}^{\rm eff} \times 10^6 \text{ from } A_{\rm FB}^{\mu\mu}$	2	_	2.4	0.1	_
$\frac{\Delta \alpha_{\rm QED}(m_{\rm Z}^2)}{\alpha_{\rm QED}(m_{\rm Z}^2)} \times 10^5$	3	0.1	0.9	_	0.1

There remains much to do:

- -- integration of spin code in optics codes
- -- diagnostics to measure directly beam-beam offsets and local dispersion to control Opp. Sign Vert. Dispers
- -- improve precision at the W threshold to match 200keV stat.
- -- Wiggler implementation esp. synchrotron radiation handling
- -- further reduction of point to point errors:
 - -- energy model, logging and diagnostics
 - -- spectrometer stability
 - -- expt magnet and momentum scale stability
- -- automatization and logging of all procedures!