ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

VIRTUAL
CONFERENCE

Future prospective for bent crystals in accelerators

Speaker: M. Romagnoni

UNIVERSITÀ DEGLI STUDI DI MILANO

Coherent interaction in crystals

- Atoms in crystal medium are arranged in a precise and periodic lattice structure
- Planes/rows of aligned atoms are observed from specific point of view
- Incoming particles along such trajectories behaves significantly differently than in an amorphous medium

Planar Channeling

- Particles aligned with atomic planes perceive a continuous potential with wells and barriers
- Particles within a critic angle $\sqrt{(2U_0)/(pv)}$ can be bound to potential:
 - Between adjacent planes if positively charged
 - Into plane if negatively charged
- Scattering is strongly different in two cases:
 - Reduction of inelastic collision with nuclei
 - Increased inelastic collision with nuclei

Bent crystals

- Being channeled particles trajectory confined along planes, bent crystals can act like waveguide
- Positive particles at high energy can travel long distance in crystal with large efficiency
- Steering power equivalent to hundreds tesla magnetic dipole achievable in compact (few mm) object with zero energy consumption

Beam	Crystal	Beam	Equivalent	Application
Energy	length	deflection	Dipole	
1	50	17	1133	Λ_{C} spin precession
TeV	mm	mrad	Tesla	
6.5	4	50	292	LHC
TeV	mm	µrad	Tesla	collimation

4

Evolution of crystal-assisted deflection

- First theorized in 1976 by Tsyganov
- ► First experiment achieved small efficiency (~10-4) but demonstrated the effect
- Numerous experiment followed, performed in Russia (U-70), Europe (CERN) and USA (Fermilab)
- For increase of efficiency critical
 - □ Simulation for optimal bending and length
 - ☐ Technological precision in crystal shaping and preservation of perfect lattice quality

Ferrara Laboratories

During last decade acquired in simulation and bent crystal samples production

Collaboration with international collaboration (UA9 @CERN, Crysbeam & Seldom ERC projects)

Large Clean Room facility for samples production In controlled environment

6 Characterization techniques

- Laser interferometer Zygo Verifire HDX:
 - large field of view (150 ø mm),
 - max lateral resolution 0.044mm,
 - max vertical resolution <1nm</p>
- HRXRD with monochromatic 8.14 KeV beam (Cu Ka₁). 7 axis handling. Goniometer with angular resolution 1.7 μrad
- Beam test with bent crystal at accelerator facilities (CERN SPS extracted beamlines, Mainz MAMI and SLAC)

Applications 1: collimation

- Efficiency of beam collimation limits maximum luminosity of an accelerator
- Currently collimation exploit series of target to scatter particles away from beam into absorber
- At TeV scale of energy extremely difficult to deflect
- Bent crystal intercepting beam halo would efficiently steer particles away from beam into absorber:
 - More control over particle trajectory
 - Reduction of secondary particles production near main beam

Applications 2: beam extraction

- Beam of steered particles conserve its energy and emittance
- Such particles can be employed for experiment in external beamline
- LHC and future accelerators external beamline could provide unique tool for detector development and fixed target experiments
- Beam halo could be redirected in specific area inside the accelerator, for dedicated experiment

Applications 3: Spin precession

Both electric and magnetic dipole moment (EDM & MDM) can be studied by observing precession of particle spin in external field

- EDM is strongly suppressed: any observation would be clear signal of <u>new physics</u>.
- Baryons MDM precise study can provide confirmation of QCD calculation.

Exploiting channeling in bent crystal instead of artificial magnetic dipole, even short-lived particle like charmed baryon can be studied!

Seldom experiment

- Seldom proposes an experiment based on bent crystal in order to study EDM and MDM of $\Lambda_{\rm C}$ baryons
- A first upstream crystal deflects protons into a target placed before LHCb detectors
- ightharpoonup A second crystal after target channels $\Lambda_{\rm C}$ produced in target
- Decay of channeled $\Lambda_{\rm C}$ is observed with LHCb in order to define its original spin state after precession in the crystal

Beamtest for SELDOM at H8

Beam 2/3 p + 1/3 π
Angular divergence 24μrad
Deflection angle resolution 50
μrad

Beamtest results

Axial effects: stochastic deflection

 Significantly different dynamics occur for alignment with lattice atomic rows

- In bent crystals, particle scattering wit atomic rows converges along axis direction, hence deflecting particles along crystal curvature
- "Stochastic deflection" is efficient for both positive and negative charged particles

Large axial fields for light ultrarelativistic particles (e-/e+) overcome linear QED condition $\chi = \gamma E/E_{Schwinger} \geq 1$, resulting in radiative loss of most of the particle momentum

Beamtest for deflection & energy loss at H4

Both deflection efficiency and radiation energy loss were measured for 120 GeV electron beam and positron beam crossing a bent Germanium crystal during axial alignment

15

Deflection

Electron beam cross the crystal close to atomic rows, undergoing large scattering

Y Vs X beam deflection (ang cut 50 rad)

Positrons beam avoids region near atomic rows as crystal is crossed, preserving initial angular divergence

Energy loss

- Electron cross crystal near atomic rows, in region of maximum axial electric fields
- Strong field regime condition $\chi \ge 1$ is always satisfied
- Positron are repelled from atomic rows, thus cross crystal in region with lower electric fields
- Only misaligned particles are effected by strong field regime

Conclusions

- Large steering power is achievable with bent crystals
- Bent crystals enables novel solution for accelerator
 - ► LHC collimation
 - Beam extraction
 - Fast decaying particles EDM & MDM studies
- Axial effects widen possibilities:
 - Efficient deflection of negative particles as well as positive ones
 - Unique opportunity to study QED non-linear effects
 - Collimation of e+/e- beam is coupled with enhanced radiative energy loss

Thanks for your attention!