

The Machine Detector Interface

Radiation / particles in both directions - both are interesting

Incoming:

- 1. products from residual gas interaction
- leakage from collimation system
- 3. secondaries from beam loss

- Outgoing:
 - lightly scattered primaries
 - 2. physics debris
 - 3. forward physics
 - 4. forward experiments

Goal: Simulate far reaching particles *in* and *out* of experiment and understand them Need: accurate magnetic particle tracking + interaction with matter

Simulating the Machine Detector Interface

- Accurate tracking required for many (>100s) magnets
 - numerical integration (like 4th order Runge Kutta) is not accurate enough
- Specialised codes exist for accelerator tracking
 - MADX, SAD, PTC, Elegant, COSY Infinity, SixTrack, OPAL, Zgoubi, Merlin
 - these often exploit specific maps for pure fields
 - no interaction with material or only limited in select places (e.g. collimators)
 - typically no secondaries tracked or their production considered
- Typically 'losses' are when coordinates exceed aperture
 - high energy particles don't just stop! (although correlation works in some cases)

Example Poincaré map through nonlinear fields

3D detector radiation transport models are often *complex* and highly specialised

simple example Geant4 detector model

L. Nevay, ICHEP Virtual Conference, 30th July 2020

A Solution: Accelerator Tracking + Geant4

different aperture shapes

- Geant4 is a widely used open source C++ library for modelling detectors
 - regularly updated and developed based on latest results by community
- Use this and add accelerator tracking

L. Nevay, ICHEP Virtual Conference, 30th July 2020

Accelerators are typically repetitive and similar in design

add library of typical accelerator components with adjustable proportions

Coordinate Systems & "Thin" Elements

curvilinear frame

- Accelerator tracking is done in a curvilinear coordinate system following the beam line
 - increased precision and only relative motion
 - beam of particles typically moves together in one direction
- Radiation transport models use *Cartesian* coordinates no preferred direction
- Use parallel geometry for coordinate transforms
- Tracking uses 'thin' elements for instantaneous kicks - for magnet fringe fields and imperfections

include as very short elements with 1 tracking step

thin element for dipole fringe fields

Cartesian frame

Beam Delivery Simulation (BDSIM) History

Beam Delivery Simulation (BDSIM) application started in 2004 by G. Blair at

Royal Holloway for Linear Collider backgrounds

- open source C++ see references at end for links
- Automatic Geant4 models of accelerators
 - start from scratch with text input or convert from optical format
 - actively developed and modernised since 2013
- Applied to many experiments and machines
 - ILC / CLIC, AWAKE, XFEL undulators, LHC collimation, Laserwires,
 - FASER, ATLAS non-collision backgrounds, MAGIX at MESA
- Also for medical applications
 - proton therapy gantries with ULB & IBA
 - radiobiological research facilities <u>LhARA</u>

Computer Physics Communications (252), July 2020, 107200

BDSIM Integration & Data

- Modern CMake build system
 - uses Geant4, ROOT & CLHEP
- Can be used as a class inside another application
- Data is stored in ROOT format with per-event structure
 - accelerator tracking simulations are typically 1 particle in, 1 particle with much simpler data format
 - radiation transport model requires more advanced format and analysis tools
 - trajectory filtering and linking back to primary
- Data format and included analysis tools key to understanding the origin of energy deposition
 - easy filtering / selection in analysis and skimming
- Strong reproducibility from output data
 - recreate single or multiple events afterwards
- Invisible "sampler" planes to record distributions after an object

example data tree

structure

Model of the Full LHC Accelerator

ATLAS Non-Collision Backgrounds

- Detailed model of IR1 leading up to ATLAS created
- Beam simulated up to "interface plane" 22.6m before

Forward Experiment Simulations

- Exploiting the same model but outgoing for forward experiment FASER
- further detail added in tunnel geometry, side tunnel and absorbers
- See *H. Lefebvre's* poster today
 - https://indico.cern.ch/event/868940/contributions/3815740/
- Used to predict muon and neutrino flux

LHC Physics Debris

- A very interesting application is physics debris
- Elastically and inelastically scattered protons and secondaries can reach far from the experiments into the accelerator
- Certain beam loss monitors are highly correlated with luminosity and not with the stored beam intensity
- This isn't a problem for the machine but it is measurable
- We can use this to measure the luminosity or, assuming the luminosity: the total cross-section
 - with down-selection to beam loss monitors that only represent luminous beam losses
- Potential for forward physics simulations!

LHC Physics Debris Simulations

- Simulate head-on p-p collision with event generator at IPs 1,5 and 8
 - CRMC using SIBYLL 2.3 model
 - add on beam collision angle to primaries and propagate from each IP
- · Record energy deposition throughout
 - individual peaks in arcs agree well with known BLMs to be correlated with luminosity

Weighted combination of each study according to luminosity

IP	Luminosity
1	1.5×10^{34}
5	1.5 x 10 ³⁴
8	0.05×10^{34}

L. Nevay, ICHEP Virtual Conference, 30th July 2020

Beam Loss Monitor Modelling

- LHC is instrumented with ~ 3600 beam loss monitors for machine protection
 - mostly gas ionisation chambers
 - too high losses and beam dumped to protect machine
- Geometry modelled in GDML using pyg4ometry package
 - see backup slides for rapid geometry package
- Calibration simulations as separate model recording charge deposited
 - agrees very well with published literature
- Use as parameterised model for simple geometry in complete LHC model
 - parameterise signal also on the collimator hits as high kinetic energy cuts can lead to lack of particles intercepting BLMs
 - place all ~ 3600 in BDSIM / Geant4 model of the LHC

Limitations & Symplecticity

BDSIM Tracker

- For longer term ring tracking we start to see limitations
 - "longer term" here is 100s to 1000s of turns of the LHC
 - for single pass models the tracking is very accurate
- Small numerical errors can build up
- 'Symplectic' tracking conserves phase space
- Here, errors build up due to the convergence of the intersection with each boundary
 - each step of an algorithm is fine on its own
 - there is always a geometrical tolerance
 - leads to inaccurate result eventually
 - loss of precision with large models
 - a particle tracker has no such problem
- Tracker applies one map at a time
 - no ambiguity along direction of travel
- Need to retain accuracy

True

intersection

Arc

Chord

Estimated

intersection

Combined Simulation Strategy

- Several possible strategies for combined tracker and physics model
 - apart from already described BDSIM full Geant4 model
 - Pass over once from tracker to 3D model
 - if particle is expected to go with beam first then be 'lost'
 - after initial scatter assume won't complete multiple turns
 - Discrete regions for physics processes
 - particle tracked in tracker
 - for select elements propagate in 3D model
 - works well for collimation but no physics in tracker
 - 3. Truly integrated tracking

choose this option

- override transportation process in Geant4
- maintain concurrent curvilinear and Cartesian coordinates
- transform from curvilinear to Cartesian to push particle in 3D world
- no stringent intersection to maintain tracking accuracy (faster)
- tracking library written
- integration underway

tracker alone is $\sim 10^3$ times faster

L. Nevay, ICHEP Virtual Conference, 30th July 2020

Conclusions - Bridging The Machine Detector Interface

- Ability to create Geant4 detector-like models of accelerators exists
 - permits understanding and analysis of origins of many background sources as well as signal propagation
 - include matter interaction and secondary particles
- Shown how to track all particles including ions and partially stripped ions

Conclusions & Outlook

- Complete multi-turn Geant4 model of the LHC accelerator
- Future work to use model with all ~ 3600 beam loss monitors to disentangle luminous and non-luminous losses
 - potentially make independent luminosity measurement
- Upcoming fully symplectic particle tracker with in-flight Geant4 physics
- Many exciting extensions being added
 - laser-Compton scattering for laserwires
 - photo-detachment; excitation; spontaneous emission for in-flight partially stripped ions (see Gamma Factory)
 - Geant4 crystal channelling model for crystal collimation and beam extraction
 - halo generation throughout from residual gas interaction
- Please contact if interested in collaboration!
 - potential for joint PhD projects also

Thank you

L. Nevay, S. Boogert, A. Abramov, S. Alden, S. Gibson, H. Lefebvre, W. Shields, S. Walker laurie.nevay@rhul.ac.uk

30th July 2020 ICHEP Virtual Conference

BDSIM - website - manual - paper

[1] Title slide image credit; CERN + BDSIM model

pyg4ometry

Geant4

BDSIM

Fluka

G4beamline

c)

- python package to rapidly prepare and convert geometry for Geant4 & FLUKA
 - create / convert / composite geometry
 - validate and ensure safe for tracking (no overlaps etc)
- Place custom components in Geant4 / BDSIM
- Have parity with models in Geant4 & FLUKA

https://bitbucket.org/jairhul/pyg4ometry/src/develop/http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/

Shielding and beam line

email stewart.boogert@rhul.ac.uk

Python Geant4

b)

pyg4ometry

User code