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Why MATHSULA?
• ATLAS, CMS, LHCb have a wide program to search for LLPs 
• However these searches are limited by a number of factors: 

• triggers 
• backgrounds from collisions (including pileup) 
• backgrounds from the beam 
• cosmics 
• the size of the detector: LLPs could decay outside!

• A detector working in a clean background-free environment 
would increase the sensitivity 

• MATHUSLA is designed to be such detector 

beam halo muons



E. Torró        31 July 20203

MATHUSLA concept

LLP	Leptonic	decay
LLP	Hadronic	decay

100	m

•MATHUSLA: MAsive Timing Hodoscope for Ultra Stable neutraL pArticles 
• Aiming to reach to Big Bang Nucleosynthesis (BBN) limit (c! ~ 107 - 108 m) lifetime 

•  need to suppress LHC backgrounds 
• Dedicated detector placed on the surface above CMS during HL-LHC:  

• O(60) meters of rock suppress most backgrounds
• Large volume filled with air as decay volume with several detector layers for tracking
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MATHUSLA concept

LLP	Leptonic	decay
LLP	Hadronic	decay

100	m

•MATHUSLA: MAsive Timing Hodoscope for Ultra Stable neutraL pArticles 
• Aiming to reach to Big Bang Nucleosynthesis (BBN) limit (c! ~ 107 - 108 m) lifetime 

•  need to suppress LHC backgrounds 
• Dedicated detector placed on the surface above CMS during HL-LHC:  

• O(60) meters of rock suppress most backgrounds
• Large volume filled with air as decay volume with several detector layers for tracking

• need robust tracking for vertex 
reconstruction 

• need good timing to separate upward 
going charged particles from downward 
going cosmic muons
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• 100 x 100 m2 x 25m high, on the surface above CMS 
• Modular configuration:  

• easy to adapt to available land on site 
• Allows for modular construction, staged integration, incremental ramp-up  
• 10 m x 10 m modules 
• Three sets of tracking detectors: 

•Floor detectors: two layers, to flag charged particles from the LHC 

•Top detectors: five layers with 1m-spacing, above the decay volume 

•Intermediate detectors: two layers, 5m below the top detectors to 
optimize performance

Baseline detector design
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• LHC collision backgrounds (muons): low rate O(1) Hz, reject with timing and entrance hit position 
• Exposed to cosmic rays and atmospheric neutrinos   

• Cosmic rays: 1.7 MHz (7 MHz) for 100x100 m2  (200x200 m2 ) detector 
• Requires veto of downward going cosmic rays (good timing) 
• In 5 m (top layers), ∆t(top,bottom) ≈ 16 ns

• Upward atmospheric neutrinos that interact in air decay volume 
• Estimate Low rate ~ 10-100 per year above 300 MeV 
• Most have low momentum proton (∼ 300 MeV - reject with time of flight)

MATHUSLA backgrounds
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• Aim for near zero background in analysis   
• Comparison of LLP sensitivity between ATLAS and baseline MATHUSLA design via exotic Higgs decays 
• The sensitivity of this design is similar to that of the original benchmark (200 x 200 m2 x 20m), by bringing the 
detector closer to the Interaction Point: 
• vertically: excavating 20m  
• horizontally: placing the detector at 70m instead of 100m 

Baseline sensitivity
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Detector hardware

• Plan to use extruded scintillators for tracking with wavelength shifting 
(WLS) fibers. 

• Fiber read out on both ends using silicon photomultimpliers (SiPMs) 
• Time difference gives longitudinal position 

• Some advantages over RPCs: 
• don’t require high voltage or gas systems 
• relatively stable with temperature and pressure chages 

Detector hardware

● Current focus for detector technology is 
on extruded scintillator bars + 
wavelength shifting (WLS) fibers + 
silicon photomultipliers (SiPMs)

● Some advantages over RPCs:
○ Don˿t require high voltage or gas systems
○ Relatively stable with temperature and 

pressure changes

● Very preliminary tests have already 
been done with a few different WLS 
fibers and SiPMs

117th LHC LLP Community Workshop Mason Proffitt
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The MATHUSLA Test Stand Description
• The MATHUSLA Test Stand is a small-scale experiment, built on the 
surface above the ATLAS detector 

• It collected data during 2018, both with LHC pp collisions and when the 
LHC was not colliding protons.  

• 2.5x2.5x6 m3 active area composed of spare detector components: 
• 59 scintillation counters from D0 (Tevatron) 
• 12 RPCs from ARGO-YBJ (cosmic ray experiment in Tibet) 
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Test Stand Tracking
• Coincidences of top-bottom scintillator planes for two triggers running simultaneously 

• Downward trigger for cosmic rays 
• Upward trigger for tracks from IP  

• Tracks were reconstructed using scintillator and RPC information 
• Upward and downward directions were distinguished with timing 
• RPCs and scintillators have timing resolution σ ~ 2 - 3 ns
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• When LHC has no beams running, data in the test stand correspond to cosmic muons 
• Downard-going tracks from incident downward cosmics 
• Upward-going tracks are created by inelastic backscattering of incident downward 
cosmic rays 

• Test stand data compared to simulated cosmic rays and backscattering

Test Stand Results without beam
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• In runs with LHC collisions, upward tracks in data correspond to two sources: 
• inelastic backscattering from cosmic rays  

• rate of upward-going tracks at large zenith angles is constant with luminosity 
• wide angular distribution  

• muons from LHC pp collisions reaching the surface  
• narrow angular distribution determined by the small solid angle subtended by the test stand  
• the rate of muons from the IP scales linearly with luminosity  
• consistent with MC simulated rates from decays of W and Z bosons and b- and c-quark jet 

Test Stand Results from LHC collisions
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• In runs with LHC collisions, upward tracks in data correspond to two sources: 
• inelastic backscattering from cosmic rays  

• rate of upward-going tracks at large zenith angles is constant with luminosity 
• wide angular distribution  

• muons from LHC pp collisions reaching the surface  
• narrow angular distribution determined by the small solid angle subtended by the test stand  
• the rate of muons from the IP scales linearly with luminosity  
• consistent with MC simulated rates from decays of W and Z bosons and b- and c-quark jet 

Test Stand Results from LHC collisions
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The test stand results confirm the background assumptions in the MATHUSLA 
proposal and give confidence in the MATHUSLA projected physics reach. 
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Cosmic ray physics

• Position on the surface and large area makes MATHUSLA perfect for cosmic ray 
measurements 

• Baseline detector can already provide useful energy spectrum information for inclined 
cosmic ray showers  
(>70º zenith angle) 

• Studies ongoing of how to expand cosmic ray physics potential 
•  For Extensive Air Shower (EAS), densities of O(104) charged particles/m2

•  problem of signal saturation at the scintillator bars for more than 1 hitting particle 
• inclusion of an RPC layer would enhance EAS detection 

• Collaborating with cosmic ray experts and looking to bring more of them!
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Summary

• Test stand data analysis complete and results public  

•  https://arxiv.org/abs/2005.02018 submitted to NIM 

• Results confirm background assumptions for MATHUSLA 

• Full baseline detector design established 

• Performing hardware tests on various scintillators, WLS fibers and SiPMs 

• In addition to searching for LLPs, MATHUSLA can be competitive cosmic ray experiment — a guaranteed 
physics payoff! 

• working with cosmic ray experts to study how to take full advantage 

• Currently updating letter of intent and planning to finish Technical Design Report  

MATHUSLA Collaboration

147th LHC LLP Community Workshop Mason Proffitt

https://arxiv.org/abs/2005.02018
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MATHUSLA documentation
• Original idea: J-P Chou, D. Curtin, H. Lubatti arXiv 1606.06298  
• Mathusla Physics case - theory white paper to be published in Physics Reports: arxiv: 1806.07396 
• Letter of Intent submitted to LHCC in November 2018: MATHUSLA LoI: arXiv 1811.00927 
• Input to European Strategy for Particle Physics: arxiv 1901.04040 
• Test stand paper:  https://arxiv.org/abs/2005.02018 
• Mathusla webpage: https://mathusla-experiment.web.cern.ch/ 

https://arxiv.org/abs/1606.06298
https://arxiv.org/abs/1806.07396
https://arxiv.org/abs/1811.00927
https://arxiv.org/pdf/1901.04040.pdf
https://arxiv.org/abs/2005.02018
https://mathusla-experiment.web.cern.ch/
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Backup
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• Extruded scintillators coupled to SiPMs  
• THE GOOD 

• SiPMs operate at low-voltage (25 to 30 V). 
• No gas involved. 
• Timing resolution can be competitive with RPCs. 
• Cost wise competitive with RPCs. 

• General concept: scintillator bar ∼ 5mx4cmx2cm with 
wave-length shifting fiber readout at both ends. 
• Transverse resolution σ = 4cm/√12 ≈ 1 cm. 
• Time difference between two ends gives longitudinal 
resolution (aiming for ∼ 1 cm)

• RPCs planes are used in many LHC detectors. 
• THE GOOD☺ 

• Proven technology with good timing and spatial 
resolution. 

• Costs per area covered are low. 
• The Less GOOD " 

• Require HV ~10 KV 
• Gas mixture used for ATLAS and CMS has high 
Global Warming Potential (GWP) and will not be 
allowed for HL-LHC. 

• RPC experts are attempting to find a replacement 
gas with lower GWP.

•Two technologies being evaluated that provide good time/space resolution needed for cosmic ray rejection 
and vertex reconstruction.

MATHUSLA technology


