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Why MATHSULA?

*ATLAS, CMS, LHCb have a wide program to search for LLPs
* However these searches are limited by a number of factors:
*triggers
» backgrounds from collisions (including pileup)
* backgrounds from the beam

* COSMICS
*the size of the detector: LLPs cou
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Id decay outside!

beam halo muons

“““““ * A detector working in a clean background-free environment
> would increase the sensitivity

* MATHUSLA is designed to be such detector
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MATHUSLA concept

*MATHUSLA: MAsive Timing Hodoscope for Ultra Stable neutral pArticles
- Aiming to reach to Big Bang Nucleosynthesis (BBN) limit (ct ~ 107 - 10® m) lifetime
* need to suppress LHC backgrounds

 Dedicated detector placed on the surface above CMS during HL-LHC:
* O(60) meters of rock suppress most backgrounds

« Large volume filled with air as decay volume with several detector layers for tracking

- Scattering Inelastic scattering rséﬁtreiggg
rLLadronic decay atmospheric Muon  tom LHC
AN |.LP Leptonic deca neutrino from

>5m ground level
20m
100 m
60 m Cosmic
rays
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MATHUSLA concept

*MATHUSLA: MAsive Timing Hodoscope for Ultra Stable neutral pArticles
- Aiming to reach to Big Bang Nucleosynthesis (BBN) limit (ct ~ 107 - 10% m) lifetime

* need to suppress LHC backgrounds
 Dedicated detector placed on the surface above CMS during HL-LHC:

* O(60) meters of rock suppress most backgrounds
« Large volume filled with air as decay volume with several detector layers for tracking

Hadronic decay

| . . |
LLP Leptonic decay - need robust tracking for vertex

— reconstruction

* need good timing to separate upward
going charged particles from downward
going cosmic muons
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Baseline detector design

100 x 100 m? x 25m high, on the surface above CMS
* Modular configuration:

el

- easy to adapt to available land on site

» Allows for modular construction, staged integration, incremental ramp-up

*10 m x 10 m modules A
Crane __50%

* Three sets of tracking detectors: support

columns
. . two layers, to flag charged particles from the LHC

» [op deteclors: five layers with 1m-spacing, above the decay volume

Detector

o . two layers, 5m below the top detectors to modules

optimize performance
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MATHUSLA backgrounds

* LHC collision backgrounds (muons): low rate O(1) Hz, reject with timing and entrance hit position
* EXposed to cosmic rays and atmospheric neutrinos
* Cosmic rays: 1.7 MHz (7 MHz) for 100x100 m2 (200x200 m<2 ) detector

* Requires veto of downward going cosmic rays (good timing)
*In 5 m (top layers), At(top,bottom) = 16 ns

* Upward atmospheric neutrinos that interact in air decay volume
* Estimate Low rate ~ 10-100 per year above 300 MeV

* Most have low momentum proton (~ 300 MeV - reject with time of flight)

Scattering Inelastic scattering
atmospheric

neutrino A

Scattering
neutrino

X\
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Baseline sensitivity

» Aim for near zero background in analysis
» Comparison of LLP sensitivity between ATLAS and baseline MATHUSLA design via exotic Higgs decays

- The sensitivity of this design is similar to that of the original benchmark (200 x 200 m? x 20m), by bringing the
detector closer to the Interaction Point:

» vertically: excavating 20m

* horizontally: placing the detector at 70m instead of 100m Can approach BBN limit
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Detector hardware

* Plan to use extruded scintillators for tracking with wavelength shifting
(WLS) fibers.

* Fiber read out on both ends using silicon photomultimpliers (SiPMs)
» Time difference gives longitudinal position

» Some advantages over RPCs:
* don’t require high voltage or gas systems
* relatively stable with temperature and pressure chages
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The MATHUSLA Test Stand Description  hios./andvora/ans/2005.0201

* The MATHUSLA Test Stand is a small-scale experiment, built on the
surface above the ATLAS detector

* It collected data during 2018, both with LHC pp collisions and when the
LHC was not colliding protons.

* 2.5x2.5x6 m3 active area composed of spare detector components:
* 59 scintillation counters from DO (Tevatron)
* 12 RPCs from ARGO-YBJ (cosmic ray experiment in Tibet)

eeeeeeee

O e % *'P ///////

6.5 m

—

I| scintillators

RPCs

RPCs

RPCs

scintillators


https://arxiv.org/abs/2005.02018

Test Stand Tracking

» Coincidences of top-bottom scintillator planes for two triggers running simultaneously
* Downward trigger for cosmic rays
» Upward trigger for tracks from IP

* Tracks were reconstructed using scintillator and RPC information

* Upward and downward directions were distinguished with timing

* RPCs and scintillators have timing resolution c ~ 2 - 3 ns

Downward-going track Upward-going track
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Test Stand Results without beam

* When LHC has no beams running, data in the test stand correspond to cosmic muons

* Downard-going tracks from incident downward cosmics

» Upward-going tracks are created by inelastic backscattering of incident downward

cosmic rays
» Test stand data compared to simulated cosmic rays and backscattering
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Test Stand Results from LHC collisions 0

* In runs with LHC collisions, upward tracks in data correspond to two sources:
* inelastic backscattering from cosmic rays

e rate of upward-going tracks at large zenith angles is constant with luminosity | ==
* wide angular distribution \ — =

* muons from LHC pp collisions reaching the surface | —]
* narrow angular distribution determined by the small solid angle subtended by the test stand <
* the rate of muons from the IP scales linearly with luminosity ‘
» consistent with MC simulated rates from decays of W and Z bosons and b- and c-quark jet
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Test Stand Results from LHC collisions N

* In runs with LHC collisions, upward tracks in data correspond to two sources:
* inelastic backscattering from cosmic rays

* rate of upward-going tracks at large zenith angles is constant with luminosity |
» wide angular distribution |

* muons from LHC pp collisions reaching the surface
* narrow angular distribution determined by the small solid angle subtended by the test stand
* the rate of muons from the IP scales linearly with luminosity
» consistent with MC simulated rates from decays of W and Z bosons and b- and c-quark jet
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Cosmic ray physics

* Position on the surface and large area makes MATHUSLA perfect for cosmic ray
measurements

- Baseline detector can already provide useful energy spectrum information for inclined
cosmic ray showers

(>70° zenith angle)
» Studies ongoing of how to expand cosmic ray physics potential
- For Extensive Air Shower (EAS), densities of O(10*) charged particles/m?
* problem of signal saturation at the scintillator bars for more than 1 hitting particle
* Inclusion of an RPC layer would enhance EAS detection
» Collaborating with cosmic ray experts and looking to bring more of them!

Mathusla 100
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* Test stand data analysis complete and results public

» hitps://arxiv.org/abs/2005.02018 submitted to NIM

STAT
I

- @ FAST BAY

» Results confirm background assumptions for MATHUSLA
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“hinese Academy of Sciences

* Full baseline detector design established
* Performing hardware tests on various scintillators, WLS fibers and SiPMs

» In addition to searching for LLPs, MATHUSLA can be competitive cosmic ray experiment — a guaranteed
physics payoff!

» working with cosmic ray experts to study how to take full advantage

» Currently updating letter of intent and planning to finish Technical Design Report


https://arxiv.org/abs/2005.02018

MATHUSLA documentation

* Original idea: J-P Chou, D. Curtin, H. Lubatti arxXiv 1606.06298

» Mathusla Physics case - theory white paper to be published in Physics Reports: arxiv: 1806.0/396
* Letter of Intent submitted to LHCC in November 2018: MATHUSLA Lol: arXiv 1811.00927

* Input to European Strategy for Particle Physics: arxiv 1901.04040

* Test stand paper: htips://arxiv.org/abs/2005.02018

» Mathusla webpage: htips://mathusla-experiment.web.cern.ch/

The MATHUSLA experiment

tothe pon Collbder in ~200%

Large Had
Mary extersiens of the Qandard Model [SM) inclade particles that are neutral, weakly coupled, and ong lived that can decay to fral ates comtanrm ng several SM
e senutiv

LLP decay volume
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MATHUSLA technology

* Two technologies being evaluated that provide good time/space resolution needed for cosmic ray rejectior
and vertex reconstruction.

. are used in many LHC detectors. .
e THE GOOD®  THE GOOD
* Proven technology with good timing and spatial * SIPMs operate at low-voltage (25 to 30 V).
resolution. * No gas involved.
» Costs per area covered are low. - Timing resolution can be competitive with RPCs.
* The Less GOOD ® - Cost wise competitive with RPCs.
* Require HV ~10 KV
» Gas mixture used for ATLAS and CMS has high » General concept: scintillator bar - Smx4cmx2cm with
Global Warming Potential (GWP) and will not be wave-length shifting fiber readout at both ends.

allowed for HL-LHC.

* RPC experts are attempting to find a replacement
gas with lower GWP.

- Transverse resolution o = 4cm/v12 = 1 cm.

 Time difference between two ends gives longitudinal
resolution (aiming for ~ 1 cm)



