

Searches for direct pair production of stops and sbottoms with the ATLAS detector

T. Stevenson (t.j.stevenson@sussex.ac.uk)

On behalf of the ATLAS Collaboration **ICHEP 2020** 31 July 2020

LHC SUSY Cross Section Working Group

- Supersymmetry predicts the existence of a new family of partner particles to the Standard Model (SM).
- If Natural SUSY exists, then stop particles should have relatively small masses.
- Cross-sections to produce stops and sbottoms typically larger than electroweak SUSY partner particles. Will discuss searches for super-partners of third generation particles (sbottom and stop).
- - Wide regions of parameter space have been excluded, need to search more challenging areas.
- Analyses can have interpretations in Dark Matter context.
 - Strong evidence from astrophysical observations for its existence, despite nature and properties of DM remaining largely unknown.

Introduction

ATLAS-SUSY-2018-12

Search for stop pairs in zero lepton final states

ATLAS-CONF-2020-03

Search for stop pairs in one lepton final states

ATLAS-CONF-2020-046

Search for stop pairs in two lepton final states

 \boldsymbol{b}

- Analyses use techniques to target different regions of stop-neutralino phase space

 - > 2-/3-body region where $\Delta m(\tilde{t}, \tilde{\chi}_1^0) \sim m_t$
 - Highly compressed 4-body region (new for ATLAS)

p

2-body decay region with high-mass ${ ilde t}$ pairs leading to large (medium) $\Delta m({ ilde t},{ ilde \chi}_1^0)$

0 lep
reclustered sma to
recursiv
track-jet based

TOM STEVENSON — ICHEP 2020

 $\Delta \phi(p_T^{miss}, I)$

- Backgrounds controlled and estimated using control (CR) and validation (VR) regions.
 - 0-lepton:

 - Other backgrounds include W+Heavy Flavour (HF) jets, single top + W and ttZ production.
 - ▶ 1-lepton:

 - Single top and diboson production are also relevant backgrounds.

 \triangleright Z \rightarrow vv with heavy flavour jets dominates all SR, except SRC which is dominated by top pair production.

Main backgrounds are top pair production, $t\bar{t}+V$, and W boson production in association with jets.

- SRs targeting the different 2-/3-/4-body regions.
- body (four-body) selections and events in the 2- & 3-body with same flavour (SF) lepton pairs with $|m_{\ell\ell}| > 20 \text{ GeV}$. E_T^{miss} significance variable gives improvement in sensitivity.

 - variables amongst others.

Major backgrounds include tt, ttZ and diboson, as well as those with fake/non-prompt lepton (FNP). Estimated with dedicated control and validation regions. TOM STEVENSON — ICHEP 2020

Events are required to have exactly two OS leptons, with min_{$m_{\ell\ell}$} > 20 GeV (10 GeV) in the two- and three-

Different N_{jets} and N_{b-jet} multiplicities required in the different regions, include ISR jet for 4-body region. Other variables include stransverse mass, ratios of E_T^{miss} and pT of leading leptons and jets, and razor

- No significant excess in SRs.
- Stop limits set in the $\tilde{t} \tilde{\chi}_0^1$ mass plane
 - \tilde{t}_1 masses up to about 1.25 TeV excluded for massless $\tilde{\chi}_1^4$
 - \tilde{t}_1 masses up to 550 (430) GeV excluded in region where
 - \tilde{t}_1 masses up to 640 GeV excluded in region where $m_{\tilde{t}_1}$ –
- Scalar (pseudo-scalar) mediator masses are excluded up to

Observed limits

Data 15-18, √s = 13 TeV, 139 fb⁻¹ $= 0L, \widetilde{t}_1 \to t \widetilde{\chi}_1^0 / \widetilde{t}_1 \to bW \widetilde{\chi}_1^0 / \widetilde{t}_1 \to bff' \widetilde{\chi}_1^0$ [2004.14060] $= 1L, \ \widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0 / \ \widetilde{t}_1 \rightarrow bW \widetilde{\chi}_1^0 / \widetilde{t}_1 \rightarrow bff' \ \widetilde{\chi}_1^0$ [ATLAS-CONF-2020-003, ATLAS-CONF-2019-017] $= 2L, \ \widetilde{t}_1 \to t \widetilde{\chi}_1^0 / \ \widetilde{t}_1 \to bW \widetilde{\chi}_1^0 / \widetilde{t}_1 \to bff' \ \widetilde{\chi}_1^0$ [ATLAS-CONF-2020-046]

Data 15-16, √s = 13 TeV, 36.1 fb ⁻¹ $\overbrace{t_1 \to t \widetilde{\chi}_1^0} / \widetilde{t}_1 \to bW \widetilde{\chi}_1^0 / \widetilde{t}_1 \to bff' \widetilde{\chi}_1^0$ [1709.04183, 1711.11520, 1708.03247, 1711.03301] $--- t\overline{t}, \ \widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0$ [1903.07570]

Data 12, **√**s = 8 TeV, 20.3 fb ⁻¹ $\overbrace{t_1}^{\widetilde{t}} \rightarrow t \widetilde{\chi}_1^0 / \widetilde{t}_1 \rightarrow b W \widetilde{\chi}_1^0 / \widetilde{t}_1 \rightarrow b f f' \widetilde{\chi}_1^0$ [1506.08616]

0
1.
P
$$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \sim m_t(m_W)$$
.
- $m_{\tilde{\chi}_1^0} = 60$ GeV.
P about 250 (300) GeV for g = 1

ATLAS-SUSY-2018-21 Search for stop pairs in Z and Higgs final states

Search for stop pairs in Z and Higgs final states

- Search for stops, with decay to Higgs and Z boson, or 2 Z bosons.
 - ▶ 1L analysis requires one H→bb candidate, $N_{b-jets} \ge 4$, $N_{jets} \ge 4(6)$, $m_T > 150$ & METSig>7(12).
 - third lepton as visible particles.

TOM STEVENSON — ICHEP 2020

3L analysis requires a SFOS lepton pair with $|m - m_Z| < 15$ GeV. SRs defined based on N_{b-jets}, leading lepton p_T , leading b-tagged jet p_T , p_T of dilepton pair and stransverse mass (using SFOS lepton pair and

Search for stop pairs in Z and Higgs final states

- also relevant.
 - Backgrounds are constrained via CRs in the fit.
- Analysis excludes:
 - \tilde{t}_1 masses up to around 900 GeV for massless $\tilde{\chi}_2^0$ and,
 - \tilde{t}_2 up to around 875 GeV for massless $\tilde{\chi}_1^0$.

Main backgrounds sources are tt+HF and ttZ. WZ, hadrons faking leptons and non-prompt leptons from tt are

ATLAS-CONF-2020-031 Search for sbottom pairs in final states with hadronic taus

Search for sbottom pairs in final states with taus

- include stransverse mass m_{T2} , H_T and min_{Θ} , amongst other variables.
- jets. Subdominant contributions arise from ttX processes.
 - top and Z backgrounds constrained using dedicated CRs.
 - Use muons instead of true taus to increase statistics in limited phase space.

Simplified SUSY model assuming $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$, where at least one Higgs boson decays to a pair of taus.

Analysis has unique sensitivity at low $\tilde{\chi}_2^0$ masses due to presence of hadronically decaying taus that mitigate the SM background, and the presence of associated tau neutrinos that add to the $E_T^{\rm miss}$ originating from the $\tilde{\chi}_1^0$.

SRs require N_{b-jets} \ge 2, \ge 2 hadronic taus with OS and visible mass [55,120] and large E_T^{miss} . Key variables

Largest background contributions from t \overline{t} and single top processes, and $Z \rightarrow \tau \tau$ produced in association with b-

• Multi-bin SR is binned in min_{Θ} (minimum angle between tau and b-jet) to exploit difference in sources: For signal events, angle between b-jet and tau lepton pair increases with b mass, and so does min_{Θ}. For tt background, b-jet and tau originate from same top resulting in relatively low values. For $Z(\tau\tau)$ +bb with highly boosted Z, tau pair recoils against b-jets, leading to large values.

- No significant excesses observed in SRs.
- \tilde{b}_1 masses up to 850 GeV are excluded.

Search for sbottom pairs in final states with taus

ATLAS-CONF-2020-048

momentum

Search for new physics in final states with an energetic jet and large missing transverse

- SR divided into bins in E_T^{miss} and search for an excess.
- Dominant backgrounds from Z(vv)+jets and W(lv)+jets. Top processes also relevant.
 - Control regions for V+jets processes and top processes.

Inclusive signature sensitive to a wide range of New Physics theories, including compressed SUSY and DM.

Select events with an energetic ISR jet and large E_T^{miss} , with up to 3 other jets vetoing all other particles.

- No significant excesses observed.
- For $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0} \sim m_b$ stop masses up to 520 GeV are excluded.
- For $m_{\tilde{b}_1} m_{\tilde{\gamma}_1^0} \sim m_b$ sbottom masses up to 520 GeV are excluded.
- coupling values $g_q = 1/4$ and $g_x = 1$.

In simplified models for WIMP-pair production in the s-channel, with Dirac fermions as dark-matter candidates, an axial-vector mediator with masses above 2 TeV is excluded for very light WIMPs and

Current

3	un		6		S	UNIVERSITY OF SUSSEX
<u>um</u>	nmari	ies				
Sea	rches*	- 95%	6 CL	_ Lov	er Limits	ATLAS Preliminary $\sqrt{s} = 13$ TeV
	S	ignatur	e ∫.	<i>L dt</i> [fb ⁻	Mass limit	Reference
	0 <i>e</i> , µ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	139 36.1	[10x Degen.] 1.9 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ [1x, 8x Degen.] 0.43 0.71 $m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	ATLAS-CONF-2019-040 7 1711.03301
	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	2.35 $m(\tilde{\chi}_1^0)=0$ GeV Forbidden 1.15-1.95 $m(\tilde{\chi}_1^0)=1000$ GeV	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	1 e,μ ee,μμ	2-6 jets 2 jets	E_{T}^{miss}	139 36.1	2.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ 1.2 $m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	ATLAS-CONF-2020-047
	0 <i>e</i> ,μ SS <i>e</i> ,μ	7-11 jets 6 jets	E_T^{miss}	139 139	1.97 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ 1.15 $m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	2.25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ 1.25 $m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 9 1909.08457
		Multiple Multiple		36.1 139	Forbidden 0.9 $m(\tilde{\chi}_1^0)=300 \text{ GeV}, \text{ BR}(b\tilde{\chi}_1^0)=100 \text{ GeV}, \text{ BR}(b\tilde{\chi}_1^0)=100 \text{ GeV}, \text{ m}(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ m}(\tilde{\chi}_1^0)=300 \text{ GeV}, \text{ BR}(b\tilde{\chi}_1^0)=100 \text{ GeV},$	1708.09266, 1711.03301 1909.08457
	0 <i>e</i> ,μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss} \ E_T^{ m miss}$	139 139	Forbidden 0.23-1.35 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ 0.13-0.85 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	4 1908.03122 4 ATLAS-CONF-2020-031
	0-1 e,μ 1 e μ	≥ 1 jet 3 jets/1 <i>b</i>	$E_T^{ m miss}$ $E^{ m miss}$	139 139	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
	$1 \tau + 1 e, \mu, \tau$	$^{-}$ 2 jets/1 b	E_T E_T^{miss}	36.1	1.16 $m(\tilde{\tau}_1)=800 \text{ GeV}$	1803.10178
	0 <i>e</i> , <i>µ</i>	2 <i>c</i>	E_T^{miss}	36.1	0.85 $m(\tilde{\chi}_1^0)=0$ GeV 0.46 $m(\tilde{\chi}_1)=50$ GeV	1805.01649 1805.01649
	0 <i>e</i> ,μ	mono-jet	E_T^{miss}	36.1	0.43 $m(\tilde{t}_1, \tilde{c}) - m(\tilde{t}_1^0) = 5 \text{ GeV}$	1711.03301
	1-2 e,μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	139 139	0.067-1.18 m(χ_2°)=500 GeV Forbidden 0.86 m($\tilde{\chi}_1^0$)=360 GeV, m(\tilde{t}_1)-m($\tilde{\chi}_1^0$)= 40 GeV	SUSY-2018-09 SUSY-2018-09
	3 e, μ ee, μμ	≥ 1 jet	$E_T^{ m miss} \ E_T^{ m miss}$	139 139	$(\tilde{\chi}_{2}^{0})$ 0.64 $m(\tilde{\chi}_{1}^{0}) = 0$	ATLAS-CONF-2020-015 9 1911.12606
	2 <i>e</i> ,μ	0.1/0	$E_T^{\rm miss}$	139	$0.42 \qquad \qquad \mathbf{m}(\tilde{\chi}_1^0) = 0$	1908.08215
	0-1 e,μ 2 e,μ	2 0/2 γ	E_T E_T^{miss}	139	1.0 m($\tilde{\ell}, \tilde{\nu}$)=0.5(m($\tilde{\chi}_1^{\pm}$)+m($\tilde{\chi}_1^{0}$)	1908.08215
	2τ 2ε.μ	0 iets	$E_T^{ m miss}$ $E^{ m miss}$	139 130	$[\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39 m($\tilde{\chi}_1^0$)=0.7	1911.06660
	ee, μμ	≥ 1 jet	E_T E_T^{miss}	139	0.256 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	0 <i>e</i> ,μ 4 <i>e</i> ,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 139	0.13-0.23 0.29-0.88 $BR(\tilde{\chi}_1^0 \to h\tilde{G})=$ 0.55 $BR(\tilde{\chi}_1^0 \to Z\tilde{G})=$	1806.04030 ATLAS-CONF-2020-040
,± 1	Disapp. trk	1 jet	$E_T^{ m miss}$	36.1	0.46 Pure Wind 0.15 Pure higgsind	0 1712.02118 0 ATL-PHYS-PUB-2017-019
$\tilde{\chi}_1^0$		Multiple Multiple		36.1 36.1	[$\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}$] 2.0 ($\tilde{\chi}_1^0 = 100 \text{ GeV}$	1902.01636,1808.04095 1710.04901,1808.04095
-	3 <i>e</i> , µ			139	$/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05 Pure Wind	ATLAS-CONF-2020-009
	еµ,ет,µт 4 е. н	0 iets	$E_{-}^{\rm miss}$	3.2 36 1	1.9 $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.01$	1607.08079 1804.03602
	4	-5 large-R je	ets	36.1	$[m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, 1100 \text{ GeV}] $ $[m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, 1100 \text{ GeV}] $ $Large \lambda_{112}''$	1804.03568
		Multiple		36.1 36.1	1.05 2.0 $m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$ $[\lambda''_{112}=2e-4, 1e-2]$ 0.55 1.05 $m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$	ATLAS-CONF-2018-003 ATLAS-CONF-2018-003
		$\geq 4b$		139	Forbidden0.95 $m(\tilde{\chi}_1^{\pm})=500 \text{ GeV}$	ATLAS-CONF-2020-016
	2 <i>e</i> , µ	2 jets + 2 <i>b</i> 2 <i>b</i>		36.7 36.1	[qq, bs] 0.42 0.61 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.07171
	1μ	DV		136	$[1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} < 3e-9]$ 1.0 1.6 BR $(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 10\%$	2003.11956

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

- Natural Supersymmetry as an extension to the SM still eludes us.
- However starting to search in more challenging areas of the phase space or more exotic decay signatures requiring new and interesting analysis techniques
 - Soft b-tagging, large R jet reclustering, etc.
- Stop 0/1/2 lepton analysis:
 - Constrain stop mass to below 1.25 TeV for small $\tilde{\chi}_1^0$.
 - Constrain stop mass to about 600 GeV in the highly compressed region.
- Stop production in Z/h final states constrain \tilde{t}_1 masses up to around 900 GeV for massless $\tilde{\chi}_{2}^{0}$.
- Sbottom analysis with hadronic taus excludes b_1 masses up to 850 GeV are excluded.
- Mono-jet plus MET analysis excludes stop masses up to 520 GeV for $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \sim m_b$ and sbottom masses up to 520 GeV for $m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0} \sim m_b$.

Conclusions

- Searching outside the box for supersymmetry: beyond the cut-and-count in <u>ATLAS analyses</u> — Frederik Ruehr
- Reconstruction techniques in supersymmetry searches with soft objects in the ATLAS experiment — Shion Chen
- Searches for SUSY with long-lived particles in ATLAS Tova Ray Holmes
- R-parity violating SUSY searches in ATLAS Johannes Josef Junggeburth
- Dark Matter searches with the ATLAS detector Ben Carlson

BACKUP

ATLAS-SUSY-2018-12 Search for stop pairs in zero lepton final states

Variable/SR	SRA-TT	SRA-TW	SRA-T0	SRB-TT	SRB-TW	SRB-T0	
Trigger			$E_{\mathrm{T}}^{\mathrm{n}}$	niss			
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 { m ~GeV}$						
N_ℓ			exac	tly 0			
$N_{ m j}$			\geq	4			
$p_{\mathrm{T,2}}$			> 80	${ m GeV}$			
$p_{\mathrm{T,4}}$			> 40	GeV			
$\Delta \phi_{\min} \left(\mathbf{p}_{\mathrm{T},1-4}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \right)$			> (0.4			
N_b			\geq	2			
$m_{\mathrm{T}}^{b,\mathrm{min}}$			> 200	GeV			
au-veto			\checkmark	/			
$m_1^{R=1.2}$			> 120	GeV			
$m_2^{R=1.2}$	$> 120 { m ~GeV}$	$60-120 \mathrm{GeV}$	$< 60 { m ~GeV}$	$> 120 { m ~GeV}$	$60-120 \mathrm{GeV}$	$< 60 { m GeV}$	
$m_1^{R=0.8}$		$> 60 { m GeV}$					
$j_1^{R=1.2}(b)$		\checkmark					
$j_2^{R=1.2}(b)$	\checkmark			_			
$\Delta R\left(b_{1},b_{2}\right)$	> 1.0 - > 1.4						
$m_{\mathrm{T}}^{b,\mathrm{max}}$	- $> 200 GeV$						
S		> 25			> 14		
$m_{{ m T2},\chi^2}$		> 450 GeV			$< 450 { m ~GeV}$		

-		
U	N DF	1

Variable/SR	SRC1	SRC2	SRC3	SRC4	SRC5	Variable/SR	SRD0	SRD1	SRD2
Trigger		1	$E_{\mathrm{T}}^{\mathrm{miss}}$			Trigger		$E_{\mathrm{T}}^{\mathrm{miss}}$	
$-\frac{1}{2}$				$E_{\mathrm{T}}^{\mathrm{miss}}$		$> 250 { m GeV}$			
			> 250 GeV			N_ℓ		exactly 0	
N_ℓ			exactly 0			N_b	exactly 0	exactly 1	≥ 2
$N_{ m j}$			≥ 4			$p_{\mathrm{T}}^{\mathrm{j}^{\mathrm{ISR}}}$		$> 250 { m GeV}$	
$p_{\mathrm{T,2}}$			$> 80 { m GeV}$			$\Delta \phi \left(\mathbf{p}_{\mathrm{T}}^{\mathrm{j}^{\mathrm{ISR}}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \right)$		> 2.4	
			> 40 GeV			$E_{\mathrm{T}}^{\mathrm{miss,track}}$		$> 30 { m GeV}$	
			> 40 CC V			$\left \Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}trk ight) ight $		$<\pi/3$	
N_b			≥ 2			N_{b}^{track}	>	1	_
$E_{\mathrm{T}}^{\mathrm{miss, track}}$			$> 30 { m GeV}$			$\frac{1}{\left \Delta\phi_{\min}\left(\mathbf{p}_{\mathrm{T},1-4},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right)\right }$	> 0.4		
$\Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}trk\right)$			$<\pi/3$			$ \eta_1^{b, \text{track}} $	< 1.2		
$\Delta \phi \left(\mathbf{p}_{\mathrm{T},1-2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \right)$			> 0.4			$\frac{\max \left[\Delta \phi \left(\mathbf{p}_{\mathrm{T}}^{\mathrm{j}^{\mathrm{ISR}}}, \mathbf{p}_{\mathrm{T}}^{b^{\mathrm{track}}} \right) \right]}{\left[-\frac{1}{2} \left(-\frac{1}{2} \operatorname{track} -\frac{1}{2} \operatorname{track} \right) \right]} \right]}$	> 2.2		
N_{i}^{S}			> 4			$\Delta \phi \left(\mathbf{p}_{\mathrm{T},1}^{b}, \mathbf{p}_{\mathrm{T},2}^{b} \right) $	< 2.5		
J						$p_{\mathrm{T},1}^{b,\mathrm{track}}$	$< 50 { m GeV}$	> 10 GeV	_
$\frac{IV_b}{IV_b}$			<u>≥ 2</u>			$p_{\mathrm{T},1}^{\mathrm{track}}$	_	$< 40 { m GeV}$	_
$p_{\mathrm{T}}^{\mathrm{ISR}}$			> 400 GeV			$\left \Delta \phi \left(\mathbf{p}_{\mathrm{T},1-4}^{\mathrm{j}^{\mathrm{track}}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{j}^{\mathrm{ISR}}} \right) \right $	_	> 1.2	_
$p_{\mathrm{T},1}^{\mathrm{S},b}$			$> 50 { m GeV}$			$ \eta_1^b $	_	< 1.6	_
$p_{\mathrm{T,4}}^{\mathrm{S}}$	> 50 GeV			$\left\ \Delta \phi \left(\mathbf{p}_{\mathrm{T}}^{\mathrm{j}^{\mathrm{ISR}}}, \mathbf{p}_{\mathrm{T},1}^{b} \right) \right\ $	_	>	2.2		
$m_{ m S}$			$> 400 \mathrm{GeV}$			$\frac{ \eta_2^b }{ \eta_2^b }$		-	< 1.2
$\overline{\Lambda}$			~ 2.0			$p_{\mathrm{T},1}^{b}$		-	$< 175 { m ~GeV}$
$ \Delta \psi \left(\mathbf{p}_{\mathrm{T}} , \mathbf{p}_{\mathrm{T}} \right) $		1	> 3.0			$\left \Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{j}^{\mathrm{ISR}}},\mathbf{p}_{\mathrm{T},2}^{b} ight) ight $			> 1.6
$R_{\rm ISR}$	0.30-0.40	0.40-0.50	0.50 - 0.60	0.60 - 0.70	> 0.70	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$\ > 26\sqrt{\text{GeV}}$	> 22	$\sqrt{\text{GeV}}$

	SRA-TT	SRA-TW	SRA-T0	SRB-TT	SRB-TW	SRB-T0
Total syst. unc.	15	12	10	14	9	9
$t\bar{t}$ theory	2	2	1	11	6	4
Single-top theory	7	5	4	1	<1	1
$t\bar{t}Z$ theory	3	<1	<1	<1	<1	<1
Z theory	<1	<1	1	<1	<1	<1
$\mu_{tar{t}}$	<1	<1	<1	4	4	4
$\mu_{t\bar{t}+Z}$	6	2	2	4	3	1
μ_Z	3	5	5	3	3	3
μ_W	2	3	3	4	4	3
$\mu_{ m single \ top}$	6	4	5	3	4	5
JER	7	3	2	6	2	3
JES	4	4	2	2	<1	<1
b-tagging	5	3	3	2	1	2
$E_{\rm T}^{\rm miss}$ soft term	2	1	1	<1	<1	<1
MC statistics	7	7	5	3	3	2

	SRC1	SRC2	SRC3	SRC4	SRC5	SRD0	SRD1	SRD2
Total syst. unc.	25	18	20	27	27	18	31	12
$t\bar{t}$ theory	20	11	12	16	21	4	9	5
Single-top theory	<1	<1	<1	<1	<1	<1	4	2
Z theory	<1	<1	1	2	4	7	3	2
W theory	<1	<1	1	2	3	<1	<1	<1
$\mu_{tar{t}}$	12	13	14	14	11	<1	2	5
μ_Z	<1	<1	<1	<1	<1	5	3	2
μ_W	<1	<1	<1	<1	<1	4	5	3
JER	5	<1	8	15	7	8	18	4
JES	<1	1	<1	4	6	1	4	2
b-tagging	2	2	2	2	2	3	5	7
Track-jet flavour	<1	<1	<1	<1	<1	4	7	<1
Track-jet flavour (low $p_{\rm T}$)	<1	<1	<1	<1	<1	7	4	1
$E_{\rm T}^{\rm miss}$ soft term	<1	<1	<1	<1	3	<1	<1	<1
Pile-up	<1	<1	<1	1	<1	2	12	<1
MC statistics	3	2	3	4	6	11	17	5

ATLAS-CONF-2020-03 Search for stop pairs in one lepton final states

Selection		tN_med	tN_high	Selection		tN_diag_low	tN_diag_high
Preselection		hard-lepto	on preselection	Preselection		hard-lepton pre	eselection without τ -ve
$N_{\rm jet}, N_{b-\rm jet}$ Jet $p_{\rm T}$	[GeV]	$\geq (4,1)$ ¿ (100, 90, 70, 50)	$\geq (4,1)$ ¿ (120, 50, 50, 25)	$N_{\rm jet}, N_{b-{\rm jet}}$ Jet $p_{\rm T}$	[GeV]	j (40	$\geq (4, 1)$ 00, 40, 40, 40)
$egin{aligned} E_{\mathrm{T}}^{\mathrm{miss}} \ E_{\mathrm{T},\perp}^{\mathrm{miss}} \ E_{\mathrm{T},\perp}^{\mathrm{miss}} \ H_{\mathrm{T},\mathrm{sig}}^{\mathrm{miss}} \ m_{\mathrm{T}} \ \mathrm{topness} \ m_{\mathrm{T}} \ \mathrm{topness} \ m_{\mathrm{top}}^{\mathrm{reclustered}} \ \Delta R(b,\ell) \end{aligned}$	[GeV] $[GeV]$ $[GeV]$	¿ 230 ¿ 400 ¿ 16 ¿ 220 ¿ 9 ¡ 2.8	į 520 - į 25 į 380 į 8 į 150 į 2.6	$m_{ m T} E_{ m T}^{ m miss} E_{ m T}^{ m miss} m_{ m T2}$ $M_{ m T2}$ $\Delta m_{ m T}^{lpha} \Delta m_{ m T}^{ m dyn} m_{ m t_1}^{ m dyn} m_{ m t_1}^{ m lep} m_{ m t_1}^{ m lep} m_{ m t_1}^{ m dyn}$	$\begin{bmatrix} GeV \\ [GeV] \\ \end{bmatrix}$	> 150 > 40 < 600 > 5	> 110 > 400 < 360 - > 60 - [220, 595]
Exclusion technique Bin boundaries	[GeV]	Based on shape-fit in $E_{\rm T}^{\rm miss} \in [230, 400], n$ $E_{\rm T}^{\rm miss} \in [400, 500], n$ $E_{\rm T}^{\rm miss} \in [500, 600], n$ $E_{\rm T}^{\rm miss} \in [500, 600], n$ $E_{\rm T}^{\rm miss} \geq 600, m_{\rm T} \in [$ $E_{\rm T}^{\rm miss} \geq 600, m_{\rm T} > 3$	E_{T}^{miss} and m_{T} in tN_med $n_{T} > 220$ $n_{T} > 220$ $n_{T} > 220$ $n_{T} \in [220, 380]$ $n_{T} > 380$ 220, 380] 380	$\frac{\tilde{\chi}_1^0}{\text{Exclusion technic}}$	que	cu	> -0.2 t-and-count

Selection		bffN_softb	bffN_btag	Selection		DM_scalar	DM_pseudo
Preselection		soft-lepton prese	election	Preselection		hard-lepton p	oreselection
$egin{aligned} N_{\mathrm{jet}} \ Jet \ p_{\mathrm{T}} \ N_{b ext{-jet}} \ b ext{-jet} \ p_{\mathrm{T}} \end{aligned}$	[GeV]	$\geq 1 > 200$ $=0$	$ \geq 2 \\ \geq 1 \\ < 50 $	$N_{\rm jet}, N_{b-\rm jet}$ Jet $p_{\rm T}$ b -tagged jet $p_{\rm T}$	[GeV] $[GeV]$	$\geq (4,$ ¿ (80, 60, ¿ (80,	$2) \\ 30, 25) \\ 25)$
$m_{ m SV}$ $m_{ m T}$	[GeV]	≥ 1 > 90	_	$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	į 23	80
$\begin{array}{c} E_{\rm T}^{\rm miss} \\ \Delta \phi(\vec{p}_{\rm T}^{\rm miss},\ell) \end{array}$	[GeV] [rad]	> 250 < 2.0		$H_{ m T,sig}^{ m miss}$ $m_{ m T}$	[GeV]	ز 1. ز 18	5 80
$\begin{array}{c} {\rm CT2} \\ \Delta \phi(p_{\rm T}^{b-{\rm jet}}, \vec{p}_{\rm T}^{\rm miss}) \end{array}$	[GeV] [rad]		> 400 < 1.5	topness $m_{top}^{reclustered}$ $\Delta \phi(iot \ \bar{m}^{miss})$ $i \in [1, 4]$	[GeV]	ز 8 ز 15 م 0	60 0
$p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss}$ Exclusion technique		< 0.04 shape-fit in $p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss}$	< 0.05 shape-fit in $p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss}$	$\frac{\Delta \phi(\operatorname{jet}_i, p_{\mathrm{T}}), i \in [1, 4]}{\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \ell)}$	[rad]	> 1.1	$\frac{.9}{> 1.5}$
Bin boundaries in $p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss}$ Bin boundaries in $\Delta \phi(p_{\rm T}^{b-\rm jet}, \vec{p}_{\rm T}^{\rm miss})$	[rad]	$\{0, 0.015, 0.025, 0.04, 0.06, 0.08\}$	and $\Delta \phi(p_{\rm T}^{b-{ m jet}}, \vec{p}_{\rm T}^{{ m miss}})$ {0,0.03,0.06,0.1} {0,0.8,1.5}	Exclusion technique Bin boundaries in $\Delta \phi(\vec{p}_{T}^{miss}, \ell)$		Based on shape fit $\{1.1, 1.5, 2.$	$t \text{ in } \Delta \phi (ar{p}_{ ext{T}}^{ ext{mis}}, 0, 2.5, \pi)$

 $^{\mathrm{iss}},\ell)$

Selection		hard-lepton	soft-lepton
Trigger			$E_{\rm T}^{\rm miss}$ trigger
Data quality		jet clea	aning, primary vertex
Second-lepton veto)	no addi	itional baseline leptons
Number of leptons	, tightness	= 1 'loose' lepton	= 1 'tight' lepton
Lepton $p_{\rm T}$	[GeV]	> 25	$> 4(4.5)$ for $\mu(e)$
Number of jets	(jet $p_{\rm T}$)	$\geq 4 \ (25 \ GeV)$	$\geq 1 \ (200 \ GeV) \text{ or } \geq 2 \ (20 \ GeV)$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$[\mathrm{GeV}]$		> 230
$\Delta \phi(j_{1,2}, ar{p}_{\mathrm{T}}^{\mathrm{miss}})$	[rad]		> 0.4
$N_{b-\mathrm{jet}}$		≥ 1	—
$m_{ m T}$	$[\mathrm{GeV}]$	> 30	
$m_{\mathrm{T2}}^{ au}$	$[\mathrm{GeV}]$	> 80	

•		
U	N DF	

ATLAS-CONF-2020-046 Search for stop pairs in two lepton final states

	SR ^{2-body}		SR ^{3-body} _W	SR ^{3-body}		$\mathrm{SR}^{4 ext{-body}}_{\mathrm{Small}\Delta m}$	$\mathrm{SR}^{4\operatorname{-body}}_{\mathrm{Large}\Delta m}$
Leptons flavour	DF SF	Leptons flavour	DF SF	DF SF	$p_{\rm T}(\ell_1) \; [{\rm GeV}]$	$[4.5(4), 25] e(\mu)$	< 100
$p_{\rm T}(\ell_1) [{ m GeV}]$	> 25	$p_{\rm T}(\ell_1) \; [{\rm GeV}]$	> 25	> 25	$p_{\rm T}(\ell_2) \; [{\rm GeV}]$	$[4.5(4), \ 10] \ e(\mu)$	$[10,\ 50]$
$p_{\rm T}(\ell_2) [{\rm GeV}]$	> 20	$p_{\rm T}(\ell_2) \; [{\rm GeV}]$	> 20	> 20	$m_{\ell\ell} [{ m GeV}]$	> 1	0
$m_{\ell\ell} [{\rm GeV}]$	> 20	$m_{\ell\ell} [{\rm GeV}]$	> 20	> 20	$p_{\rm T}(j_1) \; [{\rm GeV}]$	> 15	50
$ m_{\ell\ell} - m_Z $ [GeV]	->20	$ m_{\ell\ell} - m_Z $ [GeV]	- > 20	- > 20	$\min \Delta R_{\ell_2, j_i}$	> 1	
$n_{b-\mathrm{iets}}$	> 1	$n_{b-\mathrm{iets}}$	= 0	≥ 1	$E_{\rm T}^{\rm miss}$ significance	> 1	0
$\Delta \phi_{\rm boost}$ [rad]	< 1.5	$\Delta \phi_{\beta}^{R}$ [rad]	> 2.3	> 2.3	$p_{\mathrm{T,boost}}^{\ell\ell}$ [GeV]	> 28	30
$E_{\rm T}^{\rm miss}$ significance	> 12	$E_{\rm T}^{\rm miss}$ significance	> 12	> 12	$E_{\rm T}^{\rm miss} [{\rm GeV}]$	> 40)0
$m^{\ell\ell}$ [CoV]	> 110	$1/\gamma_{ m R+1}$	> 0.7	> 0.7	$R_{2\ell}$	> 25	> 13
m_{T2} [GeV]	> 110	$R_{p_{\mathbf{T}}}$	> 0.78	> 0.70	$R_{2\ell 4j}$	> 0.44	> 0.38
		$M_{\Delta}^{\mathrm{R}} \; [\mathrm{GeV}]$	> 105	> 120		!	

Signal Region	$\left \text{SR-SF}_{[110,120)}^{2\text{-body}} \right $	$\mathrm{SR}\text{-}\mathrm{SF}^{2\text{-}\mathrm{body}}_{[120,140)}$	$\mathrm{SR}\text{-}\mathrm{SF}^{2\text{-}\mathrm{body}}_{[140,160)}$	$\mathrm{SR}\text{-}\mathrm{SF}^{2\text{-}\mathrm{body}}_{[160,180)}$	$\mathrm{SR}\text{-}\mathrm{SF}^{2\text{-}\mathrm{body}}_{[180,220)}$	$\operatorname{SR-SF}^2_{2}$
Total SM background uncertainty	19%	20%	17%	15%	15%	200
VV theoretical uncertainties	_	2.4%	3.5%	4.9%	4.4%	7.19
$t\bar{t}$ theoretical uncertainties	10%	11%	6.2%		1.7%	2.79
$t\bar{t}Z$ theoretical uncertainties	1.0%	2.2%	4.2%	5.2%	5.0%	11°_{2}
$t\bar{t}$ -Wt interference	_				1.0%	5.79
Other theoretical uncertainties	1.0%	1.4%	2.7%	2.5%	2.6%	1.99
MC statistical uncertainty	5.1%	5.4%	7.0%	7.7%	9.9%	8.79
$t\bar{t}$ normalization	7.6%	4.8%	1.0%			
$t\bar{t}Z$ normalization	1.1%	3.2%	5.6%	7.2%	6.4%	4.89
Jet energy scale	11%	6.7%	9.6%	2.0%	3.4%	2.0°
Jet energy resolution	3.6%	13%	7.0%	6.1%	3.6%	7.79
$E_{\rm T}^{\rm miss}$ modelling	2.9%	3.6%	1.0%	4.1%	2.7%	1.29
Lepton modelling	3.6%	1.8%	1.8%	3.8%	3.7%	6.49
Flavor tagging	1.0%	1.0%	1.0%	2.6%	3.0%	2.4°
Pile-up reweighting and JVT	_	1.4%	1.0%	1.0%	1.7%	_
Fake and non-prompt leptons	_		1.1%		2.8%	4.3°

Signal Region	$\left \text{SR-DF}_{[110,120)}^{2\text{-body}} \right $	$\text{SR-DF}_{[120,140)}^{2\text{-body}}$	$\text{SR-DF}_{[140,160)}^{2\text{-body}}$	$SR-DF_{[160,180)}^{2-body}$	$SR-DF_{[180,220)}^{2-body}$	$\operatorname{SR-DF}_{[2]}^2$
Total SM background uncertainty	20%	20%	15%	16%	14%	21%
VV theoretical uncertainties $t\bar{t}$ theoretical uncertainties	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.3\% \\ 12\%$	$2.6\% \\ 7.6\%$	1.0%	$2.0\%\ 3.1\%$	1.80
$t\bar{t}Z$ theoretical uncertainties $t\bar{t}-Wt$ interference Other theoretical uncertainties	$egin{array}{c c} 1.2\% & \ -\ 1.0\% & \ \end{array}$	2.0% - 1.2%	5.3% - 2.8%	6.6% - 3.2%	5.7% - 2.7%	16°_{2} 3.3°_{2}
MC statistical uncertainty	4.7%	5.0%	6.9%	8.2%	7.7%	6.6
$t\bar{t}$ normalization $t\bar{t}Z$ normalization	$egin{array}{c c} 7.2\% \ 1.4\% \end{array}$	$5.6\%\ 2.8\%$	$1.2\% \\ 6.9\%$	-9.1%	$\overline{7.3\%}$	7.2
Jet energy scale Jet energy resolution $E_{\rm T}^{\rm miss}$ modelling Lepton modelling Flavor tagging Pile-up reweighting and JVT Fake and non-prompt leptons	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10% 6.6% 6.1% 1.1% 1.0% 1.6% 3.5%	2.5% 6.2% 1.0% 1.6% 1.3% 1.0%	6.1% 4.3% 2.2% 1.3% 2.0%	1.0% 5.3% 2.2% 1.3% 1.0% 1.0% 7.1%	2.6° 2.0° 1.0° 1.0° 1.0° 1.0° 1.3°

Signal Region	$ $ SR-DF $_W^{3-body}$	$\mathrm{SR} ext{-}\mathrm{SF}^{3 ext{-}\mathrm{body}}_W$	$\operatorname{SR-DF}_t^{3\operatorname{-body}}$	$\text{SR-SF}_t^{3-\text{body}}$	$ \mathrm{SR}^{4\text{-body}}_{\mathrm{Small}\Delta m} $	$\mathrm{SR}^{4\text{-body}}_{\mathrm{Large}\Delta m}$
Total SM background uncertainty	18%	26%	18%	22%	25%	14%
VV theoretical uncertainties	8.0%	10%	1.0%	1.5%	3.6%	4.9%
$t\overline{t}$ theoretical uncertainties	8.2%	6.6%	14%	8.6%	1.0%	6.3%
$t\bar{t}Z$ theoretical uncertainties			1.2%	2.0%	_	
$t\bar{t}$ - Wt interference		1.0%		1.1%	_	2.4%
Other theoretical uncertainties			1.4%	1.6%		
MC statistical uncertainty	5.8%	7.4%	5.6%	6.7%	$3.3%$	2.7%
VV normalization	15%	20%	1.0%	2.0%	2.8%	8.6%
$t\bar{t}$ normalization	2.3%	1.9%	4.9%	3.3%	1.0%	6.1%
$t\bar{t}Z$ normalization	_		4.1%	4.5%		
Jet energy scale	5.5%	3.7%	3.8%	4.1%	1.0%	3.2%
Jet energy resolution	2.3%	11%	9.0%	18%	1.3%	3.5%
Lepton modelling	1.3%	2.0%	1.0%	2.5%	1.3%	3.3%
$E_{\rm T}^{\rm miss}$ modelling	1.1%	2.2%	3.0%	1.8%	_	1.0%
Flavor tagging	3.1%	2.9%	1.6%	1.0%	_	1.3%
Pile-up reweighting and JVT	1.0%	1.0%			1.0%	
Fake and non-prompt leptons	1.7%			4.6%	25%	

41

TOM STEVENSON — ICHEP 2020

TOM STEVENSON — ICHEP 2020

TOM STEVENSON — ICHEP 2020

Selection	\mathbf{S} ignal Region	$\sigma_{\rm vis}$ [fb]	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	p(s
	$\mathrm{SR}^{2 ext{-body}}_{110,\infty}$	0.21	29.3	31^{+11}_{-8}	0
	$\mathrm{SR}^{2 ext{-body}}_{120,\infty}$	0.15	21.4	21^{+8}_{-6}	0.
	$\mathrm{SR}^{2 ext{-body}}_{140,\infty}$	0.10	13.2	14^{+5}_{-4}	0
Two-body	$\mathrm{SR}^{2 ext{-body}}_{160,\infty}$	0.06	8.2	$11^{+5}_{-3.0}$	0
	$\mathrm{SR}^{2 ext{-body}}_{180,\infty}$	0.06	7.9	$9.6^{+3.8}_{-2.8}$	0
	$\mathrm{SR}^{2 ext{-body}}_{200,\infty}$	0.06	7.6	$8.4^{+3.6}_{-2.3}$	0
	$\mathrm{SR}^{2 ext{-body}}_{220,\infty}$	0.05	7.6	$7.5^{+3.1}_{-2.0}$	0
	$\mathrm{SR} ext{-}\mathrm{DF}^{3 ext{-}\mathrm{body}}_W$	0.023	3.2	$5.7^{+2.3}_{-1.5}$	0
Three-body	$\mathrm{SR} ext{-}\mathrm{SF}^{3 ext{-}\mathrm{body}}_W$	0.05	7.0	$5.6^{+2.3}_{-1.5}$	0.
	$\text{SR-DF}_t^{3-\text{body}}$	0.04	5.5	$6.9^{+2.9}_{-1.9}$	0
	$\operatorname{SR-SF}_t^{3-\operatorname{body}}$	0.04	6.3	$6.1^{+2.6}_{-1.6}$	0
Four body	$\mathrm{SR}^{4 ext{-body}}_{\mathrm{Small}\Delta m}$	0.06	8.2	$9.6^{+3.8}_{-2.5}$	0
rour-bouy	$\mathrm{SR}^{4 ext{-body}}_{\mathrm{Large}\Delta m}$	0.08	11.1	$11.1_{-3.0}^{+4.5}$	0

ATLAS-SUSY-2018-21 Search for stop pairs in Higgs final states

Search for stop pairs in Higgs final states

Requirement / Region	$\mathrm{SR}_{1\mathrm{A}}^Z$	$\mathrm{SR}_{\mathrm{1B}}^Z$	$\mathrm{SR}_{2\mathrm{A}}^Z$	$\mathrm{SR}_{\mathrm{2B}}^Z$
Number of signal leptons		\geq	3	
Number of SF-OS pairs		\geq	1	
Leading lepton $p_{\rm T}$ [GeV]		>	40	
Subleading lepton $p_{\rm T}$ [GeV]		>	20	
$ m_{\ell\ell}^{\rm SF-OS} - m_Z [{\rm GeV}]$		<	15	
Third leading lepton $p_{\rm T}$ [GeV]	> 20	> 20	< 20	< 60
$n_{\rm jets}~(p_{\rm T}>30~{\rm GeV})$	≥ 4	≥ 5	≥ 3	≥ 3
$n_{b-\text{tagged jets}} \ (p_{\text{T}} > 30 \text{ GeV})$	≥ 1	≥ 1	_	≥ 1
Leading jet $p_{\rm T}$ [GeV]			> 150	
Leading <i>b</i> -tagged jet $p_{\rm T}$ [GeV]	—	> 100	—	
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	> 250	> 150	> 200	> 350
$p_{\mathrm{T}}^{\ell\ell} \; [\mathrm{GeV}]$	_	> 150	< 50	> 150
$m_{\mathrm{T2}}^{3\ell} \; [\mathrm{GeV}]$	> 100		_	

Requirement / Region	$\mathrm{SR}^h_{1\mathrm{A}}$	$\mathrm{SR}^h_{\mathrm{1B}}$
Number of signal leptons	1	L
$n_{h-\mathrm{cand}}$	\geq	1
$n_{b-\text{tagged jets}} \ (p_{\text{T}} > 30 \text{ GeV})$	\geq	4
$n_{\rm jets}~(p_{\rm T}>60~{\rm GeV})$	≥ 4	≥ 6
$m_{\mathrm{T}} \; [\mathrm{GeV}]$	> 150	> 150
${\mathcal S}$	> 12	> 7

Search for stop pairs in Higgs final states

Search for stop pairs in Higgs final states

ATLAS-CONF-2020-031 Search for sbottom pairs in final states with hadronic taus

	Common Prese	lection			Com	mon SR requirements
$N_{\tau} + N_{\mu}$ N_{jets} $p_{\text{T}}(\text{jet}_{1})$ $p_{\text{T}}(\text{jet}_{2})$ $\Delta\phi(\text{jet}_{1,2}, \vec{p}_{\text{T}}^{\text{miss}})$		≥ 1 ≥ 3 > 140 GeV > 100 GeV > 0.5		$egin{array}{c} N_\mu \ N_ au \ OS(au_1, au_2) \ m(au_1, au_2) \ m_{ ext{T}2} \end{array}$		0 ≥ 2 yes [55, 120] GeV > 140 GeV
$N_{b ext{-jets}}$		≥ 2		$H_{\mathrm{T}}^{}$		> 1100 GeV
$p_{\mathrm{T}}(b\text{-jet}_1)$ Trigger	$E_{\pi}^{\text{miss}} + b_{\text{-iet}}$	> 100 GeV	E_{π}^{miss}		Single-bin SR	Multi-bin SR
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 160 GeV	OR	> 200 GeV	\min_{Θ}	> 0.6	3 bins: $< 0.5, [0.5, 1.0], >$

Search for sbottom pairs in final states with taus

Uncertainty	Single-bin SR	Multi-bin SR		
		$\min_{\Theta} < 0.5$	$0.5 < \min_{\Theta} < 1.0$	$\min_{\Theta} > 1.0$
Generator modeling	37%	42%	44%	27%
Normalization / transfer factors	15%	11%	12%	18%
JER and JES	12%	5.1%	9.8%	22%
Tau leptons	8.3%	3.5%	2.3%	15%
MC statistical uncertainty	6.9%	6.8%	7.2%	11%
Flavor tagging	3.8%	1.0%	1.8%	5.4%
Other	2.9%	1.3%	1.8%	6.6%
Total	40%	43%	46%	41%

ATLAS-CONF-2020-048

momentum

Search for new physics in final states with an energetic jet and large missing transverse

Requirement	SR	$W \rightarrow \mu \nu$	$Z \rightarrow \mu \mu$	$W \rightarrow ev$	$Z \rightarrow ee$	top	
primary vertex		at least one with ≥ 2 associated tracks with $p_T > 500$ MeV					
trigger		$E_{\mathrm{T}}^{\mathrm{miss}}$		single-	electron	E ^{miss} , single- electron	
$p_{\rm T}^{\rm recoil}$ cut	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu) > 200 \mathrm{GeV}$	p _T ^{miss} + p _T (μμ) > 200 GeV	p ^{miss} + p _T (<i>e</i>) > 200 GeV	p _T ^{miss} + p _T (<i>ee</i>) > 200 GeV	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu) >$ 200 GeV or $ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(e) >$ 200 GeV	
jets		up	to 4 with $p_{\rm T}$ >	$30 \text{GeV}, \eta < 2$	2.8		
$ \Delta \phi(\text{jets}, \mathbf{p}_{\text{T}}^{\text{miss}}) $		$> 0.4 (> 0.6 \text{ if } 200 \text{ GeV} < E_T^{\text{miss}} \le 250 \text{ GeV})$					
leading jet		$p_{\rm T}$ >	• 150 GeV, $ \eta <$	$< 2.4, f_{ch}/f_{max} >$	> 0.1		
<i>b</i> -jets	any	none	any	none	any	at least one	
electrons or muons	none	exactly one muon, with $p_{\rm T} >$ $10 {\rm GeV},$ $30 < m_{\rm T} <$ $100 {\rm GeV};$ no electron	exactly two muons, with $p_{\rm T} >$ $10 {\rm GeV},$ $66 < m_{\mu\mu} <$ $116 {\rm GeV};$ no electron	exactly one electron, tight, with $p_T >$ 30 GeV, $ \eta \notin$ (1.37, 1.52), tight isolation, $30 < m_T <$ 100 GeV; no muon	exactly two electrons, with $p_T >$ 30 GeV, $66 < m_{ee} <$ 116 GeV; no muon	as for $W \rightarrow \mu v$ or as for $W \rightarrow e v$	
τ -leptons			nc	one			
photons			nc	one			

TOM STEVENSON — ICHEP 2020

Selection	$\langle \sigma \rangle_{obs}^{95}$ [fb]	S_{obs}^{95}	S_{exp}^{95}
$p_{\rm T}^{\rm recoil} > 200 {\rm GeV}$	861	119653	86000^{+27000}_{-24000}
$p_{\rm T}^{\rm recoil} > 250 {\rm GeV}$	350	48636	35600^{+12700}_{-10000}
$p_{\rm T}^{\rm recoil} > 300 {\rm GeV}$	156	21624	15500^{+6000}_{-4300}
$p_{\rm T}^{\rm recoil} > 350 {\rm GeV}$	87	12066	8200^{+3100}_{-2300}
$p_{\rm T}^{\rm recoil} > 400 {\rm GeV}$	52	7285	4700^{+1800}_{-1300}
$p_{\rm T}^{\rm recoil} > 500 {\rm GeV}$	21	2903	1910^{+720}_{-530}
$p_{\rm T}^{\rm recoil} > 600 {\rm GeV}$	10	1421	930^{+350}_{-260}
$p_{\rm T}^{\rm recoil} > 700 {\rm GeV}$	4.2	578	480^{+180}_{-130}
$p_{\rm T}^{\rm recoil} > 800 {\rm GeV}$	2.1	296	267^{+100}_{-75}
$p_{\rm T}^{\rm recoil} > 900 {\rm GeV}$	1.2	165	161^{+62}_{-45}
$p_{\rm T}^{\rm recoil} > 1000 {\rm GeV}$	1.3	189	113^{+43}_{-31}
$p_{\rm T}^{\rm recoil} > 1100 {\rm GeV}$	0.5	73	71^{+27}_{-20}
$p_{\rm T}^{\rm recoil} > 1200 {\rm GeV}$	0.3	39	47^{+19}_{-13}

