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The standard model is full of "long-lived particles”
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The standard model is full of "long-lived particles”

Stable: lightest particle with
Its quantum numbers

‘ P Metastable:

highly virtual mediators
small mass splittings
small couplings
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The standard model is full of "long-lived particles”

Stable: lightest particle with
Its quantum numbers

cT (m) 6
p Metastable:

1040 highly virtual mediators
small mass splittings
small couplings
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NO reason to think'there are onby Standard SRl tS S CE IR L eLlgd (el
can be long-lived for the same reasons

(small mass splittings, small couplings, virtual mediators)

Model long-lived particles...

Happens in all kinds of theories of new physics, but I'll focus on one:
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Happens in all kinds of theories of new physics, but I'll focus on one:

Why we love SUSY Why we don’t love SUSY

Gives a solution to the hierarchy problem
Gives a dark matter candidate
Is a particularly elegant mathematical concept
Gives rise to many different particles with

complex and ~unpredictable mass spectra
(keeps us employed for decades)
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Happens in all kinds of theories of new physics, but I'll focus on one:

Why we love SUSY Why we don’t love SUSY

We thought it would be easier to find
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Varying lifetime creates completely different
signatures in our detector

Many of those variations include signatures
we didn’t design ATLAS to reconstruct

Must have dedicated searches for each
signature — adds a new dimension to the
types of searches we need to cover SUSY
scenarios!
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How do we cover the lifetime space?
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Now repeat for different objects...

Take a very similar model — still produces an R-hadron, but has muons and fewer jets

Large lifetime can be covered similarly: highly ionizing tracks
Smaller lifetimes need new strategy : displaced muons (+ displaced vertices)
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Now need to handle a new background: cosmic rays
Developed a highly efficient tag to bring down backgrounds
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-33/
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Now repeat for different objects...

Adding electrons to a signature further complicates the search

M: clean signatures, little bremming, few fakes
e: lots of ID and calo activity, brems and conversions create displaced electrons!

Used a likelihood-based identifier for electrons that didn’t depend on do,
pixel hits, or other displacement-dependent quality parameters
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Can we do it better in-house?

g B Ny
Even better, have recently been able to use RECAST to
re-interpret an LLP result with a new SUSY model
RECAST lets us preserve A-

background estimates, signal sample processing, cutflow
— If a new model is thought of later, can simply run over
and produce new limits
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— very hard to parametrize!
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New limits placed on a stealth SUSY model!
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Conclusions

Long-lifetimes are a common feature of SUSY models
Means more unique searches are required

Exotic object based searches are broadly applicable
But very challenging to re-interpret

Lots of recent work done with parameterization
and RECAST to make this possible

Of course, reinterpretation materials can’'t do all the work
Can’t cover new signatures!

Many more novel ATLAS LLP searches on the horizon
Stay tuned!
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