A case study about the mass exclusion limits for the BSM vector resonances with the direct couplings to the 3rd quark generation

Mikuláš Gintner^{1,2} & Josef Juráň^{1,3}

¹IEAP CTU in Prague, Czech Republic
 ²Zilina U. in Zilina, Slovakia
 ³Silesian U. in Opava, Czech Republic

Eur. Phys. J. C 80, 161 (2020)

Introduction

2

Experimental direct searches:

• ATLAS+CMS

Gauge bosons

- $s^{1/2} \le 13$ TeV, IL ≤ 139 fb⁻¹
- no "pp \rightarrow R" signal \Rightarrow upper bounds on " $\sigma_{prod} \times BR(R \rightarrow ab)$ " \Rightarrow MEL
 - > the upper bounds are not universal
 - > model and calculation dependency
 - plethora of BSMs huge task to check all

ATLAS Exotics searches (May 2020) – vector resonances

SSM $Z' \to \ell \ell$	2 e, µ	_	_	139
SSM $Z' \rightarrow \tau \tau$	2τ	-	-	36.1
Leptophobic $Z' \rightarrow bb$	-	2 b	_	36.1
Leptophobic $Z' \rightarrow tt$	0 e,μ	≥ 1 b, ≥ 2 J	Yes	139
SSM $W' \to \ell \nu$	1 e,μ	_	Yes	139
SSM $W' \to \tau \nu$	1τ	_	Yes	36.1
$HVT \ W' \to WZ \to \ell \nu qq \text{ model } B$	1 e,μ	2j/1J	Yes	139
HVT $V' \rightarrow WV \rightarrow qqqq$ model B	0 e,μ	2 J	_	139
HVT $V' \rightarrow WH/ZH$ model B m	nulti-chann	el		36.1
HVT $W' \rightarrow WH$ model B	0 e,μ	≥ 1 b, ≥ 2 J		139
LRSM $W_R \rightarrow tb$ m	nulti-chann	el		36.1
LRSM $W_R \rightarrow \mu N_R$	2μ	1 J	_	80

Our Goals

Deeper investigation of the MELs

- usually tailored for narrow resonances
- ATLAS+CMS upper bounds on " $\sigma_{prod} \times BR(R \rightarrow ab)$ "
- the Upper Bounds depend on various characteristics of resonance and their validity is limited by the assumptions and approximations

Particular questions

- restriction by the **NWA** ($\Gamma/M < 10\%$)
- the impact of the resonance-to-fermions free parameters
- the role of the b-quark proton contents

top-BESS model

the effective Lagrangian

Main features

- SU(2)_{L+R} triplet of vector resonances (ρ^0 , ρ^+ , ρ^-)
- neutral & charged vector resonances are degenerate in mass
- its **mass** and **total width** depends on the model's couplings
- its total width grows quickly with the resonance mass
- direct couplings to fermions: 3rd quark generation only
- mixing with SM GBs

Based on

- modified BESS [R.Casalbuoni et al, PLB 155, 95 (1985), NPB 282, 235 (1987)]
- NLoM of NGBs $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$
- Hidden Local Symmetry global $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(2)_{HLS}$ symmetries local $SU(2)_L \times U(1)_Y \times SU(2)_{HLS}$

top-BESS model

the Lagrangian's free parameters

- the gauge couplings:
 - ≻ g ... SU(2)_L
 - ≻ g' ... U(1)_Y
 - ≻ g"/2 ... SU(2)_{HLS}
- the resonance masses: $M_
 ho pprox \sqrt{lpha} g^{\prime\prime} v/2$
- the direct vector-to-fermion couplings:

vertex	$V^{3}t_{L}t_{L}, V^{3}b_{L}b_{L}$	$V^{\pm} t_{L} b_{L}$	$V^3 t_R^{} t_R^{}$	$V^3 b_R b_R$	$V^{\pm} t_R^{} b_R^{}$
cpIng	<mark>b</mark> _ g"/2	<i>b</i> _ g"/2	<i>b_R g</i> "/2	p² b _R g"/2	p b _R g"/2

- mixing induced interactions of ρ to all fermions: ~ 1/g"
- perturbativity limit: $g''/2 \le 4\pi$
- EWPD, Higgs sector measurements, unitarity limits: g'' > 12
- EWPD: $|b_{L,R}| < 0.1$

Total Decay Width of ρ_{tBESS}

Dominant decay channels of ρ_{tBESS}

Calculations

Studied processes

- LHC s-channel production + 2-body decay
- 2 prod. mechanisms: DY + VBF
- used approximations: NWA (both) & EWA (VBF)

Experimental input

- ATLAS+CMS, \leq 13 TeV, \leq 36 fb⁻¹
- 95% CL **upper bounds** on " $\sigma_{prod} \times BR(R \rightarrow ab)$ "

decay channels:

 $WW, WZ, WH, ZH, jj, \ell\ell, \ell\nu, \tau\tau, \tau\nu, bb, tt, tb$

restrictions from:

 $WZ_{\mathrm{DY}}, WW_{\mathrm{DY}}, WZ_{\mathrm{DY+VBF}}, WW_{\mathrm{DY+VBF}}$

no direct interactions ($b_{L,R} = 0$)

• Γ/M = 10%

Production XS

the effect of the b-quark proton contents

the direct interactions turned on

allowed values of b_{LR}

• unification of the $WZ_{DY}, WW_{DY}, WZ_{DY+VBF}, WW_{DY+VBF}$ limits

Summary

- MEL's of the tBESS vector resonance triplet were investigated
- NWA limitation: $\Gamma/M_{\rho} \le 0.1 (0.2) \Rightarrow M_{\rho} \le 2.3 (2.8) \text{ TeV}$
- If or MEL ≥ 3 TeV analysis beyond NWA required
- Even when NWA applies:
 - the b-quark contents of the proton cannot be ignored
 - there are param. space regions for which MEL \leq 2 TeV
- widely accepted generalization that the current vector resonance
 MEL's dwell at 5 TeV or higher is of limited validity