

Searches for long-lived particles at CMS

<u>Cristián H. Peña</u> ICHEP 2020 I Prague July 2020

Long-lived Particles in the SM

- Long-lived particles are everywhere in the SM
- Wide range of masses and lifetimes

Cristián H. Peña I Searches for long-lived particles at CMS

‡ Fermilab

Long-lived Particles at the LHC

SM Long-lived Particle: π[±]

Lifetime can be treated as a free parameter
Same reasons apply for BSM particles

Lived Particles at the LHC

Fermilab

implified!)

4

nts

LLPs follow an exponential decay
Important to use all sub-detectors

Silicon Tracker

Outstanding impact parameter (d_0) resolution: below 100 μ m

 d_0 resolution critical for $SV \rightarrow$ enables LLP sensitivity

Tracker based

PRINCETON UNIVERSITY LLP to Displaced Dijets in the Tracker Vul

NEW: EXO-19-021

LLP decays in tracker volume \rightarrow Secondary vertex

Use tracks with large d_0 to form a SV Use SV to suppress SM backgrounds

Displaced Dijets in the Tracker Volume

SV from LLP decays have higher track multiplicity

Other SV information:

- Vertex track multiplicity;
- Vertex L_{xy} significance
- Cluster RMS

7

Tracker based

Displaced Dijets in the Tracker Volume

SV information is combined into a Gradient Boosted Decision Tree (GBDT)

PRINCETON

IVERSITY

lab

Other SV information:

- Vertex track multiplicity;
- Vertex L_{xy} significance
- Cluster RMS

Displaced Dijets in the Tracker Volume

Drop in acceptance × tracking efficiency

NEW: EXO-19-021

- Best sensitivity at ~10-100 mm
- Lost of sensitivity at 1m → acceptance
- Drop in sensitivity at low LLP masses

Displaced Dijets in the Tracker Volume

Inclusive approach — 1 Secondary Vertex

NEW: EXO-19-021

- Best sensitivity for $h \rightarrow ss$ with:
 - lifetimes ~1- 50 cm and masses 40-55 GeV
- LLP (s) → bb decreases sensitivity
- No sensitivity below ~20 GeV LLPs

Drop in acceptance × tracking efficiency

ALSO NEW: EXO-19-011 → DNN-based LLP tagger

LLP Decays in the ECAL

‡ Fermilab

Technology Legacy: Crystal Electromagnetic Calorimeter

Designed for excellent energy resolution

Fermilab

- Crucial role in H→yy observation
- Resulted in outstanding time resolution
 - LLP enabler

Delayed Photons in the Electromagnetic Calorimeter

Lesson from tracker: LLP sensitivity drops at ~1m

 χ_0 : LLP — heavy: slow moving \rightarrow delayed

10.1103/PhysRevD.100.112003

EXO-19-005

Signature

 γ : delayed and slanted at ECAL

See also Justin's talk (here)

Use Cluster Shape to ID Photons from LLP Decays

🛟 Fermilab

http://www.roma1.infn.it/cms/tesiPHD/franci.pdf

Use Cluster Shape to ID Photons from LLP Decays

‡ Fermilab

http://www.roma1.infn.it/cms/tesiPHD/franci.pdf

- Signal delayed (>1.5 ns) wrt SM backgrounds
- Final selection also uses pT^{miss} (200 GeV)

Delayed Photons in the Electrom gnetic Calorimeter γ

EXO-19-005

Large extension in $\mathbf{c}\tau$ and mass

 $\overline{\mathbf{q}}$

~10-fold increase in $c\tau$

Peak sensitivity around ~few meters

LLP-HLT Trigger (2017) \rightarrow 1 photon search \rightarrow expanded c τ coverage

Delayed jets in the Electromagnetic Calorimeter

EXO-19-001

10.1016/j.physletb.2019.134876

Delayed signals jets in calorimeter

Use ECAL deposits define a jet timestamp

‡ Fermilab

Delayed jets in the Flectromagnetic Calorimeter

🛟 Fermilab

Expands lifetime for heavy LLPs (increased acceptance for longer lifetimes)

Cristián H. Peña I Searches for long-lived particles at CMS

Summary

- CMS tracker-based search provides outstanding sensitivity for lifetimes ~ 1- 50 cm.
- CMS ECAL-timing LLP searches extend lifetime coverage and access unique LLP photon decays
- Many opportunities for improvement remain for Run2, Run3 and Phase-II:
 - •LLP aware triggers, innovative LLP reconstruction, precision timing

Backups

- CMS Fundamentals:
 - 4T magnet & ALL silicon tracker
 - Muons + Compact
 - Crystal EM Calorimeter
- Precision timing & Track-Triggering

Technology Legacy

- Higgs and EWK Symmetry Breaking
- New Physics Probes
 - Dark Matter
 - SUSY (strong & EWK)
 - Exotics (new resonances...)
- Probing Long-lived Particles

New Physics at the LHC: long-lived particles

Up to now: large majority of experimental work

Cristián H. Peña I Searches for long-lived particles at CMS

Long-lived Particles at the LHC (II)

Lifetime Mechanism Small coupling Small phase space Scale suppression **GMSB** SUSY AMSB Split-SUSY RPV Twin Higgs NN Quirky Little Higgs Folded SUSY Freeze-in MO Asymmetric Co-annihilation Singlet Scalars Portals ALPs **Dark** Photons Heavy Neutrinos

Long-lived particles ubiquitous in BSM Physics

Detecting Long-lived Particles

Generic LLP signature

Tracking Planes — charged particles

Experimental Considerations

- Center-of-mass energy
- Fiducial Volume
- Distance from IP
- Triggering
- Irreducible background

CMS: Critical Role on Long-lived Particles

arxiv:1911.00481 — CODEX-b

‡ Fermilab

How to unlock CMS' full LLP potential?

How far can we push mass and lifetime?

 $m_{\rm LLP}$

Cristián H. Peña I Searches for long-lived particles at CMS

Technology Legacy: Silicon Tracker

► x

Example: 1 TeV \rightarrow s ~250 μ m $\Rightarrow \sigma_s \sim 25 \mu$ m (10% uncertainty)

This design WILL enable LLP searches in tracker

у

Cristián H. Peña I Searches for long-lived particles at CMS

Technology Legacy: Silicon Tracker

World's largest all-silicon tracker

Momentum resolution: 1-3% for 1-100 GeV Impact parameter resolution: ~few 10μ m

Ideal for displaced-vertex LLP signature

Triggering on Long-lived Particles

Large Efficiency drop for light LLPs

- Very soft (displaced) jets well below current thresholds
- Critical need for dedicated triggers Run3 opportunity

Technology Legacy: Crystal Electromagnetic Calorimeter

Designed for excellent energy resolution

Fermilab

- Crucial role in H→yy observation
- Resulted in outstanding time resolution
 - LLP enabler

Technology Legacy: ECAL Calibrations

- In-situ inter-calibrations using resonances, geometric symmetries, electron E/p
 - For each of 75,000 crystals to 0.5% precision
- Live monitoring of crystal transparency with laser: once every 40 min for each crystal
- Corrections for local containment, module boundaries, shower shape, pileup, etc.

date (month/year)

Cristián H. Peña I Searches for long-lived pa

0.9

0.8 0.7 0.6 0.5 0.4 0.3

0.2

0.1

7 5 3

elative response

(10³³ cm⁻² s⁻¹)

Physics Legacy: $H \rightarrow \gamma \gamma$

🛟 Fermilab

$H \rightarrow \gamma \gamma$ observed @ 5.6 σ significance

口 🐺 Fermilab

Physics Legacy $(H \rightarrow \gamma \gamma) \implies$ Technology Legacy

Stringent $H \rightarrow \gamma \gamma$ constraints required ...

Time resolution of ~ 100 ps for energetic photons

辈 Fermilab

Future Technology Legacy: Precision Timing

MTD = MIP Timing Detector BTL = Barrel Timing Layer ETL = Endcap Timing Layer MTD = BTL + ETL

PROPOSING: MTD — Dedicated MIP timing layers

- MIP timing with 30 ps precision
 - Acceptance: $|\eta| < 3.0$, $p_T > 0.7$ GeV in barrel, $\sim p > 0.7$ GeV in endcap
 - Location: just outside the tracker

LLPs and Precision Timing

Timing results in large gains in cτ and mass reach Needs L1-trigger to fully exploit LLP potential

口 🐺 Fermilab

Physics Legacy $(H \rightarrow \gamma \gamma) \implies$ Technology Legacy

Stringent $H \rightarrow \gamma \gamma$ constraints required ...

Time resolution of ~ 100 ps for energetic photons

‡ Fermilab

Physics Legacy $(H \rightarrow \gamma \gamma) \implies$ Technology Legacy

Stringent $H \rightarrow \gamma \gamma$ constraints required ...

Time resolution of $\sim 30 \text{ ps}$ for energetic photons

LLPs and Precision Timing

- Use Timing (MTD or ECAL) to tag Jets at L1
 - 30 ps for 20 GeV neutral energy deposits in ECAL
 - 30 ps for MIPS

blaced Dijets in the Tracker Volume

LLP decays in tracker volume \rightarrow Secondary vertex

X→j+lepton/MET

X→jj+...

X→jjj+...

Utilize jet, track and SV information to discriminate displaced-jet signatures from backgrounds.

Doesn't require the existence of two displaced vertices, one vertex is enough

➢ Offline Calo H_T and Jet Selection: Calo H_T>400GeV, Calo jets p_T >50GeV, |eta|<2.0</p>

Secondary vertex reconstruction

 Select the tracks associated with the dijet candidate, and not compatible with the primary vertex (IP2D>0.5mm, IP2D_{sig}>5.0);

CMS Technology Legacy: Phase1 Tracker Update

Fermilab

Figure 2. Left: Conceptual layout comparing the different layers and disks in the current and upgrade pixel detectors. The disks are placed in order to maximize the 4-hit η coverage. Right: Transverse-oblique view comparing the pixel barrel layers in the two detectors.

CMS Technology Legacy: Phase1 Tracker Update

😤 Fermilab

30% (rel) increase b-tagging efficiency @ 1e-2 light fake rate

‡ Fermilab

CMS Technology Legacy: Iterative Tracking

CMS Technology Legacy: Muon Momentum Resolution

ATLAS

CMS

🛟 Fermilab

CMS: Tracker does a lot of the job

Technology Legacy: ECAL Calibrations

- In-situ inter-calibrations using resonances, geometric symmetries, electron E/p
 - For each of 75,000 crystals to 0.5% precision
- Live monitoring of crystal transparency with laser: once every 40 min for each crystal
- Corrections for local containment, module boundaries, shower shape, pileup, etc.

date (month/year)

Cristián H. Peña I Searches for long-lived pa

0.9

0.8 0.7 0.6 0.5 0.4 0.3

0.2

0.1

7 5 3

elative response

(10³³ cm⁻² s⁻¹)

HL-LHC Beamspot

Beamspot has a width in time of ~180ps

