Search for Proton Decay via $p \rightarrow e^+\pi^0$ and $p \rightarrow \mu^+\pi^0$ in 450 kiloton years Exposure of the Super-Kamiokande Detector

A. Takenaka (ICRR, University of Tokyo) for the Super-Kamiokande Collaboration ICHEP 2020 28th/July/2020

2

Grand unified theory (**GUT**) is motivated by charge ^{gamma} quantization and coupling const. unification @10¹⁵⁻¹⁶ GeV. **Proton decay**, direct transition between quarks and leptons, is predicted in GUT and **gives a strong evidence**. Typically predicted proton lifetime is ~10³⁴⁻³⁵ years. So far, no experimental evidences…

Super-K is a world leading experiment on this search.

Previous limits: $\tau/B_{p\to e+\pi 0} > 1.6 \times 10^{34}$ years, $\tau/B_{p\to \mu+\pi 0} > 7.7 \times 10^{33}$ years (90% C.L.) PRD 95, 012004 (2017)

Super-Kamiokande

The world largest underground water Cherenkov detector. (upright cylinder) ~1,000 m underground (2,700 m.w.e.) @Mt. Ikenoyama in Japan.

Detects water Cherenkov light from charged particles and reconstructs events with PMT charge & timing. Inner detector: $50 \text{ cm } \Phi \text{ PMT} \times 11129$ Outer detector: $20 \text{ cm } \Phi \text{ PMT} \times 1885$

20 cm 🖡

Duter detecto

outwards

acing

· Mounted on detector wall.

Cherenkov Ring

Image (MC)

New Analysis Improvement

•

•

•

Enlarging Fiducial Mass

Super-K is huge detector but its physics sensitivity is still limited by statistics…

\rightarrow Enlarging the fiducial mass.

	Conventional	Enlarged
Fiducial Mass	22.5 kton	27.2 kton
Distance to wall	2 m	1 m
Exposure (1996~2018)	372 kton*years	450 kton*years

Remarkable merits

- Enables the use of past data that has never been analyzed.
- Improves p-decay search sensitivity for every mode.

Considerations to achieve it

- 1. Reconstruction performance.
- 2. External background contamination.
- 3. Data and MC agreement.

1. Reconstruction Performance - PID Improvement

Main issue in enlarged region: Worse **particle identification performance** due to lower number of PMT hits (unavoidable).

$$\chi^2(e \text{ or } \mu) \propto -\sum_{i \text{ (Hit PMT)}} \log_{10}(\operatorname{Prob}(q_i^{obs}, q_i^{exp}(e \text{ or } \mu)))$$

In this situation, accurate expected PMT charge (q_i^{exp}) becomes more important. \rightarrow Revised expected charge table to reproduce real Cherenkov ring image more accurately, reducing biases and **increasing p-decay signal efficiency by ~20%** in enlarged region.

Signal and Background

 $p \rightarrow e^+ \pi^0$ MC event display

- All secondary particles (e+, γ) can be reconstructed.
- Unique event topology (back-to-back).
- Free protons (H) are available in Super-K.
 - Free from Fermi motion and nuclear effects.

- Atmospheric (ATM) neutrino events can mimic p-decay signal.
- Often accompanied with neutrons.
- Since 2008, electronics upgrade enables to tag faint signature of **neutrons (\gammas)**. (n+p \rightarrow d+ γ (2.2 MeV))
 - Neutron tagging efficiency ~25%.
 - \cdot Requiring no tagged neutrons reduces ATM ν BG by ~50%.

Search Performance p \rightarrow e⁺ π ⁰

 $p \rightarrow e^+ \pi^0$ signal selection

- 1. Fully contained and vertex in fiducial mass region.
- 2. Cherenkov ring = 2 or 3
- 3. Particle identificationall shower-like rings
- 4. No Michel-e.
- 5. for 3-ring events, π^{0} mass cut 85 < M $_{\pi 0}$ < 185 MeV/c²
- 6. Total Mass cut

 $800 < M_{tot} < 1050 \text{ MeV/}c^2$

- 7. Total Momentum Cut Box1: 0 < P_{tot} < 100 MeV/c (Free proton rich & Low ν BG) Box2: 100 < P_{tot} < 250 MeV/c
- 8. For data since 2008, **no tagged neutrons**.

Enlarging fiducial mass increases p-decay search sensitivity by ~12%.

Data Result p \rightarrow e+ π ⁰

Data: Super-K Full Livetime, 1996~2018, 450 kton*years.

- Lower lifetime limit @90%C.L.
 - $\tau/B_{p\to e+\pi 0} > 2.4 \times 10^{34}$ years (published: 1.6×10³⁴ years, 306 kton*years)
 - Most stringent constraint. ~1.5 times longer than published.

- \cdot 1 candidate in BOX2. Same event reported in the last paper.
- No new candidates incl. in enlarged region.
- No significant data excess compared to the expected BG (0.94 in total).
- · Lower lifetime limit @90%C.L.
 - $\tau/B_{p\to\mu+\pi0} > 1.6 \times 10^{34}$ years

(published: 7.7×10³³ years, 306 kton*years)

PRD 95, 012004 (2017)

Most stringent constraint. ~2 times longer than published.

Baryon Number Violation

Other BNV Searches in Super-K

11

No evidence of BNV process so far \cdots . There is still room for statistic improvement (other than $p \rightarrow e^+ \pi^0$ and $p \rightarrow \mu^+ \pi^0$, convetional fiducial mass results).

Future Prospect

- To increase the search sensitivity, atmospheric ν background rejection and larger exposure are crucial.
- We are loading Gd into Super-K (SK-Gd) NOW to obtain higher neutron tagging efficiency.
 Talk 30th/July 10:45~ By Lluis @v session

Relation b/w Neutron tagging efficiency and ATM $\,
u\,$ BG rejection power

With Hyper-K (fiducial mass:~190 kton), sensitivity will reach $\tau/B_{p\to e+\pi 0}$ ~10³⁵ years for 20 years operation.

•

- Neutron tagging efficiency ~70% (w/ more sensitive PMT)
- The detector construction is ongoing. (Operation 2027~)

Conclusion

Performed proton decay search (p \rightarrow e⁺ π^{0} , p \rightarrow $\mu^{+}\pi^{0}$) with enlarged fiducial mass of Super-Kamiokande detector.

Fiducial mass: 22.5 kton \rightarrow 27.2 kton

No evidence of proton decay \cdots

- Using all available data (1996~2018, 450 kton*years),
- $\tau/B_{p\to e+\pi 0}$ > 2.4×10³⁴ years (90%C.L.) (no candidates)
- $\tau/B_{p\to\mu+\pi\,0} > 1.6 \times 10^{34}$ years (90%C.L.) (1 candidate)
- 1.5~2 times longer than published and most stringent constraints on proton lifetime for these modes.

Keep pursuing with improved analysis technique.

- Further background reduction in SK-Gd.
- Enlarging fiducial mass for other decay modes.
 - Develop more sophisticated reconstruction tools.

Other Super-K talks

200. The diffuse supernova neutrino background in Super-Kamiokande, Sonia El Hedri, 30th/July 10:00

- 210. Spallation background in the Super-Kamiokande experiment, Laura Bernard, 29th/July 18:30
- 444. Status of the SK-Gd project, Lluis Marti-Magro, 30th/July 10:15
- 827. Atmospheric Neutrino Oscillation with Super-Kamiokande, Volodymyr Takhistov, 30th/July 9:45