Search for non-Newtonian gravity with optically levitated microspheres

Nadav Priel, on behalf of the **Gratta Gravity Group**Giorgio Gratta, Charles Blakemore, Alex Rider,
Alex Fieguth, Denzal Martin, Nadav Priel, Akio Kawasaki

Stanford University

ICHEP July 28, 2020

Modification of Newtonian gravity

- Many different motivations from the theory side
- Modified Newtonian gravity

is traditionally modelled like
$$V(r) = -\frac{GMm}{r} (1 + \alpha e^{-r/\lambda})$$

The experiment in one slide

 Dielectric particles are attracted to the intense part of a laser beam

- Dielectric particles are attracted to the intense part of a laser beam
- A laser beam propagating vertically-upward supports the particle against gravity

- Dielectric particles are attracted to the intense part of a laser beam
- A laser beam propagating vertically-upward supports the particle against gravity
- Restoring force is applied by light field automatically ⇒trap is stable

- Dielectric particles are attracted to the intense part of a laser beam
- A laser beam propagating vertically-upward supports the particle against gravity
- Restoring force is applied by light field automatically ⇒trap is stable
- Measuring the output light turns this into a position/force sensor.

- Dielectric particles are attracted to the intense part of a laser beam
- A laser beam propagating vertically-upward supports the particle against gravity
- Restoring force is applied by light field automatically ⇒trap is stable
- Measuring the output light turns this into a position/force sensor.
- An attractor is placed next to the sphere in order to generate gravitational attraction
- Shield is introduced to reduce electrostatic forces

Detailed setup

- Vacuum in the chamber is 10⁻⁷ mbar
- Can trap 4.7 μm as well as 7.6 μm diameter microspheres
- Heterodyne detection method
- Active feedback cooling
- 3d position/sphere spin are recorded at 5kHz/20kHz
- Beam waist is 3.41 μm

The vacuum chamber

A trapped microsphere

7/28/2020 11

Force calibration and sensitivity

- Charge state of the sphere is controlled down to the single electron level
- This is used to perform force calibration on a sphere by sphere basis
- Response is stable to within 5%, and reproducible on the timescale of days
- Response is linear up to 500 e
- The noise floor is dominated by pointing fluctuations of the trapping and reference beams

Expected signal

- Simulated data for $d=10~\mu\text{m},\,\alpha=10^{10},\,\lambda=5~\mu\text{m}$
- Position systematics are below 1 μm
- Auxiliary microscopes are used for position estimation of relative position of the sphere as well

Nanofabrication

- Custom, in-house fabrication of attractor
 - Au-filled trenches in Si cantilever
- Both are gold coated
 - Minimize residual electrostatic interactions

A taste of background mitigation

- Electrostatics
 - Neutral sphere
 - Sphere has EDM
 - Quasi-crystalline gold surface has micron scale grains with $\sim 100 \text{ mV}$
- Scattered Light
 - Attractor clips the beam
 - Stray light
- Mitigation
 - Drive attractor along density modulation at f_0 , and observe correlated force at f_0 , $2f_0$, $3f_0$, ...
 - Shield

Conclusion and Outlook

Conclusion

- An apparatus to search for non-Newtonian gravity with optically- levitated microsphere had been built and characterized
- Performance of the force measurement is characterized, showing the sensitivity of $<10^{-17} \text{ N}/\sqrt{\text{Hz}}$

Outlook

- Certain amount of the data is taken, and analysis is ongoing
- With planned upgrades to stabilize the system and suppress noise level, we expect to suppress backgrounds sufficiently for a first competitive measurement.

Acknowledgment

Giorgio Gratta, Brandon Sandoval, Charles Blakemore, Alex Rider, Alex Fieguth, Denzal Martin, Nadav Priel, Akio Kawasaki

