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Heavy Neutral Leptons

Beyond Standard Model right-handed
particles known as sterile neutrinos or Heavy

Neutral Leptons (HNL) (shown as N)

e Can substitute an HNL into any SM
neutrino process via extended PMNS
matrix elements (if kinematically
allowed).

e O(100 MeV) mass HNL could be
produced in high intensity neutrino
beams, then decay to visible particles in
detectors.
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HNL enter SM physics through mass mixing.
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e Liquid Argon Time Projection Chamber (LArTPC) Cathode
running in the Booster Neutrino Beam (BNB) (470m
from target) at Fermilab since 2015 (~1.5 x 10221 POT

of beam exposure) Electrons detected

e Charged particles ionise the argon inside the TPC by the wire planes

at anode,
e 3 sense-wire planes detect ionisation electrons Anode providing the
. . spatial, kinematic
produced by charged particles traversing detector to “«——— E=500V/em information.

) ) 200cm
create bubble-chamber like images.

e 32 PMTs collect scintillation light used for triggering MBOL&J<Z

and neutrino event selection Run 3493, Event 41075,
October 23rd, 2015

See talk 757. The MicroBooNE Experiment by
Ralitsa Sharankova for more details on the
MicroBooNE LArTPC



https://indico.cern.ch/event/868940/contributions/3813777/
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Decay to um Pairs

This analysis searches for Nap*n*

o Two tracks from shared vertex
with invariant mass of HNL

o Decay rate «<|U ] 2

For Ul 2 << 1decay length much
longer than distance to MicroBooNE
(470m)

Consider non zero IUu4I , (IY,,1=0)
Relevant HNL produced by K*su*N
o 260 MeV < Mass < 385 MeV

o Finaleventrate ec|U | 4
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HINL travels along the
neutrino beam line and

N

decays in flight he _—

Example decay channels

Majorana HNL
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Signal

Backgrounds

Simulated HNL decay Data -

cosmic ray
(CR) muon

e event

SIMULATION 700 MeV HNL Decay
(Mass 370 MeV)

N—p-1T+

CR MUON DATA: RUN 15160 EVENT 2949
FEBRUARY 24, 2018
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Run 3471 Event 54287, October 21", 2015
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we HNL [My = 365 MeV/c?] <+« HNL Trigger window

HNL travel slower than SM neutrinos

Neutrinos arrive in well separated beam spills which last for 1.6 ps

Around ~10% of HNLs arrive “late”, after the neutrino spill. Fraction is mass dependent.
Analysis focuses on late HNLs, no neutrino background

Expect cosmic-ray background only.



HNL Trigger
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=== BNB neutrinos
we HNL [My = 365 MeV/c?]

- = BNB Trigger window
- HNL Trigger window
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e Special HNL trigger operating since June 2017 with window extending 33% longer than

neutrino trigger
e This analysis uses 2e20 POT (~ a third of data collected with trigger)

e |dentical HNL trigger runs when there is no beam spill to collect cosmics for background

subtraction for data driven analysis
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e Automatic event reconstruction uses Pandora pattern recognition* to create
reconstructed particles.

o Using same tools as many neutrino analyses in MicroBooNE
e Select events containing a reconstructed vertex associated with exactly two

reconstructed tracks.

uBooNE
S

SIMULATION 700 MeV HNL Decay

(Mass 370 MeV) HNL efficiency: 50%
NESTR A Cosmic rejection: 90%

Eur. Phys.J. C 78, 82 (2018) *



https://doi.org/10.1140/epjc/s10052-017-5481-6
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e Preselection removes obvious cosmics . ,
and poorly reconstructed HNL Cosmics typically

) ) mimic HNL via a
e Most effective cosmic removal cuts;

) broken track or
o Containment cut: both tracks must

end within the TPC
o Angle cut: a cut on an almost-flat
opening angle (160°)

delta ray causing
a vertex to be

found.

g i
< 0.1251 |
g :
§0.100 ;
2 0.075. i e Preselection designed to have
2 | limited mass dependency
& : | o HNL efficiency : 45-50%
& 00257 s ' o Cosmic rejection: 98.4%
£ 0.000 ; ; i

0 1 2 3

Opening angle [rad]
= MC HNL == MC CO HNL == Off-beam BNB
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BDT Training

Fraction of events
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B HNL Signal (370 MeV)
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Train BDT to discriminate between HNL and
cosmics for 10 HNL masses in studied range
(260 MeV to 385 MeV).

5 input variables for each candidate

Opening angle

Total momentum

Angle from the beamline
Azimuthal angle
Invariant mass

O O O O O
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o o e Train BDT to discriminate between HNL and
cosmics for 10 HNL masses in studied range
% 1 2 3 % 1 2z 3 (260 MeV to 385 MeV).
Ag [radians] Ag [radians]
0.2 0.27—
o ol e 5inputvariables for each candidate
% 025 05 075 1% o025 05 075 1 o Opening anale
2 low] [GeV] low] [GeV] P g ang
2 06 0.2 o Total momentum
5 04 o1 o Angle from the beamline
0.2 .
2 ; o Azimuthal angle
S o 1 2 3 0 1 2 3 ;
2 6 [radians] 0 [radians] © Inva ria nt mass
0.2 0.2
0.1 0.1 2 * MicroBooNE 2 y MicroBooNE 2 ¥ MicroBooNE
% 0.8 ” é 0.8 " | S 0.8 =
a 2 0 2 d B 0 2 g e (ngé IEIg\I/l)al :% o gl.\'z% E/Ig\r/l)al g e fggé I\S/Igv)al
¢ [radians] ¢ [radians] S 0.61 —— Off-beam data S 0.6{ —— Off-beam data : 0.6{ —— Off-beam data
0.2 0.2 Z. Z Z
fan} fa o] fan]
s 0.4 S 0.4 o 0.4
0.1 0.1 5 g =
"§ 0.2 *é 0.2 *§ 0.2 ﬂ“\‘
0 0.3 0.4 0.5 ° 0.3 0.4 0.5 2 e e = = il T, o
my [GeV] my [GeV] 00 o025 05 o075 1 00 025 05 o075 1 0 025 05 075 1
BDT score BDT score BDT score 12
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Validation of selection workflow is performed on
BNB v interaction data (and simulation) to
ensure we are sensitive to data/MC differences.

e Onesingle additional cut to reject
non-signal like events containing highly
ionising tracks (protons)

Run 3471 Event 54287, October 21*, 2015

BDT trained with BDT trained with BDT trained with
600 HNL mass 285 MeV 400 HNL mass 325 MeV HNL mass 365 MeV Contains V events W|th Similar
MicroBooNE MicroBooNE A6 MicroBooNE .
2 500 8350~ 2 topology to HNL (mainly CC V|.11
= —— MC BNB £ 3001 —— MC BNB = —— MC BNB pion)
g 400 } Data BNB g } Data BNB % 300+ } Data BNB
= S 250 g
(] © ©
% 300 ; 200 1 % s Evidence that if HNL are present in
5 B 150 8 data we would select them (at the
S 200 9 9
g £ 100 8 1o0 rate we expect)
Z 100 Z 4
50
0 - , 0 : - : 0
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

BDT score BDT score BDT score 13



Looking at Data

e Run BDT over data in beam
correlated HNL window.

e Signal and background data
samples show good
agreement across BDT score

e No excess observed in signal
like region (BDT score < 0.95)

[ ]

Set limitson |U | 2asa

function of HNL mass (M,))
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N
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(MeV)| HNL Bkg. Data| HNL Bkg. Data
260 [0.21+0.03 <3.7 1 [D43+£0.06 169+19 170
265 |0.42+0.056 2+2 1 0.6+0.1 18 +19 205
285 1.6+03 <37 3 0.84+0.1 175+19 174
300 24+03" 24+2 1 1.0£0.2 126416 121
305 41+06y 2+2 4 0.84+0.1 61+11 80
325 6+1 2+2 0 1.6+£03 5711 69
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370 24 +4 2+2 4 4+06 37+9 47
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e Uncertainties come
predominantly from

o Flux (kaon production
at target, horn
focusing uncertainty)

Uncertainty

o Trigger efficiency (PMT

timing resolution) 260 280 300 320 340 360 380
HNL mass [MeV]

o Detector effects
(Dynamically Induced
Charge - DIC, Space
Charge Effects - SCE)

--- DIC =--- Corr. --- Trigger === Total
www SCE === FHlgx === POT
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e Publishedin PRD DOI:10.1103/PhysRevD.101.052001

e Firstsearch for HNLsin a . o
LAFTPC HNL Exclusion Limit

e Observed and expected

. ° H 10_6 T B
median upper limits at the 3 I Majorana
90% CL agree within1 © I
L] L] o
standard deviation over =
the entire mass range. =
2 10~7 T r .
e Limits for Dirac case are £ 1 S_ ] = Observed N
identical but reduced by a (; 1 N == Expected
factor of 1/2 as only Nap-mr* 3 { MicroBooNE 1 Expeeted 16
- : 20 Expected 20
: 4 =] POT: 2.0x10 p
possible and N_, ..« <V 10-8 , , , ,
300 350 300 350

Mass [MeV] Mass [MeV]
16



Ll m |t | n CO nteXt Owen Goodwin 28/07/2020 -

The University of Manchester

10-4I

e Results similar
sensitivity to NAG62 and
NuTeV for upper end of
Mass range

e PSI91and T2K
currently set more
constraining limits for

most of mass range. 10-10

, 0.0 0.1 0.2 0.3 0.4
e MicroBooNE sets the HNL mass [GeV]

most constraining
limit at production SIN —— NA62 —— NuTeV

threshold of 385 MeV PIENU —— PS191 ---- MicroBooNE [Dir.]
—— KEK —— T2K === MicroBooNE [Maj.]
— E949

10—6_

10—8-

|Upal? limit at 90% C.L.
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e Thisisthe first search for HNLs in a LArTPC

e More searches in MicroBooNE ongoing.
o Collected almost 3 times more data in the late window than used in this analysis
o Selections for different final states ( Ul

o Can also search within neutrino beam SBND .o~~~
l, b

N
[/ o
anun ‘l =
o, MR 7. -

”

=
~ S A -
Vet ~-

e Full SBN program will extend sensitivities

o SBND ~110m from beam, higher flux.

1
110m Om

o ICARUS significantly larger TPC volume

Detector Baseline Active LAr
(1) mass (tonnes)

SBND 110 112
MicroBooNE 470 87
ICARUS T-600 600 476
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Backup
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Booster Neutrino Beam (BNB) o.c:coodwin 250772000

Proton collisions with fixed
target produce beam of
predominantly - (>96 %)
and K*" (<4%) which decay
to neutrinos.

Charge selection by
focusing horn.

Has been run in neutrino
mode since 2015 when

MicroBooNE came online

The University of Manchester
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Majorana or Dirac

e HNLs could be a Majorana or

Dirac particle

e Majorana HNL N — N

o  Nap*m and Napr* in equal
number

o Combination of y*m and y-
T isotropic in HNL rest
frame.

e Dirac HNL

o Noapm only

o Decay rate half of Majorana

o Asymmetric angles of decay
in HNL rest frame (Muon
more likely to be in direction
of beam).
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HNL mass: 300 MeV

1200
1000+
800 1
600 1

400 - M

200 T

0 : . i
-1.0 -0.5 0.0 0.5 1.0
Muon cos 6 w.r.t. beamline

—— Majorana/2
—— Dirac, reweighted

Work with Majorana assumption but reweight
to Dirac distribution to produce results for both
scenarios 21
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Pre-selection requirements

Pre-selection requirements serve the double
purpose of increasing S/B ratio and
improving reconstruction quality of HNL
candidates for further discrimination via BDT
application

Variables chosen to have minimum
dependency on HNL mass.

Mass-dependent information is reserved for
BDT, which is trained for each HNL mass.

Name

Variable Used

Requirement

Fiducial volume

HNL vertex x coordinate
HNL vertex y coordinate

HNL vertex z coordinate

>12 cm and < 244.35 cm

> -80.5 cm and < 80.5 cm
(> 25 cm and < 675 cm) or
(> 775 cm and < 951.8 cm)

Vertex-track

Distance between vertex

<5cm

distance and farthest track start point
Minimum number Number of hits > 30 hits
of hits of smallest track on collection plane
Flash PE PE of largest flash in event > 0PE
Vertex-flash 2-d distance between HNL
: <150 cm
distance and largest flash

Track containment

x coordinate of end point
farthest from centre

y coordinate of end point
farthest from centre

z coordinate of end point
farthest from centre

>12 cm and < 240 cm

> -98 cm and < 98 cm

> 15 cm and < 1010 cm

Opening angle

3-d angle between tracks

< 2.8 radians (160°)

Invariant mass

Range-calculated HNL
candidate invariant mass

< 0.5 GeV
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., 1054
Q
E 10% ]
e Consider non zero |Uu4|, (V_,1=0) é 10?
5 10
e HNL produced by K'->u*™N = 101?
=
e Flux calculated using parent meson (kaons) & 10 \|
. . . . . 10-1 , : . ,
information from neutrino flux simulation 0.0 0.1 0.2 0.3 0.4 0.5
HNL mass [GeV]
for a mass M, — KoNe == KNy === noNe === n-Ny
a. Calculate HNL kinematics for each kaon
decay
b. Weight by ratio of HNL and neutrino on on
branching width . MowENToR MowewTom -
c. Weight by probability of HNL intersecting /,{+ VM
TPC.
LEFT-HANDED LEFT-HANDED
ANTI-PARTICLE PARTICLE

(«m?) 23



Limit Setting

Follow a two-bin approach, used for modified frequentist CLs method.

Number of HNL candidates
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1201 . (g’%f;?gfglgz% Mass | BDT Score >0.95 | BDT Score 0.5-0.95

(MeV)| HNL  Bckg. Data| HNL Bckg. Data
1001 HNL Signal x10

T (325 MeV) 260 [0.21+£0.03 <3.7 1 |0.43+£0.06 169+19 170
80- ——— Off-beam data 25 0424006 2+2 1 | 06+£0.1 185+19 205
O 285 | 16403 <37 3 | 08+£01 175+19 174
60 - 300 | 2403 242 1 |1.0+£02 126+16 121
305 | 4406 2+2 4 | 08+01 61+11 80
407 325 | 6+1 2+2 0 |16+03 57+11 69
20 “ 345 | 1242 242 4 | 2403 59+11 69
L. 365 | 2043 242 5 | 2+03 35+8 53
0 , T 370 | 2444 242 4 | 4406 37+9 47
0 O.ZSBDT(')'sscorg.K 385 | 36+6 <37 4 | 4+06 20+6 28

—7

Signal Depleted
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