

Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector

40th International Conference on High Energy Physics ICHEP 2020 - 28/07/2020 Owen Goodwin on behalf the MicroBooNE collaboration

The University of Manchester

University of Manchester

Heavy Neutral Leptons

MANCHESTER 1824 The University of Manchester

Beyond Standard Model right-handed particles known as *sterile neutrinos* or *Heavy Neutral Leptons* **(HNL)** (shown as **N**)

- Can substitute an HNL into any SM neutrino process via extended PMNS matrix elements (if kinematically allowed).
- O(100 MeV) mass HNL could be produced in high intensity neutrino beams, then decay to visible particles in detectors.

HNL enter SM physics through mass mixing.

MicroBooNE

Owen Goodwin 28/07/2020

MANCHESTER 1824 The University of Manchester

- Liquid Argon Time Projection Chamber (LArTPC) running in the Booster Neutrino Beam (BNB) (470m from target) at Fermilab since 2015 (~1.5 x 10^21 POT of beam exposure)
- Charged particles ionise the argon inside the TPC
- **3 sense-wire** planes detect ionisation electrons produced by charged particles traversing detector to create bubble-chamber like images.
- **32 PMTs** collect scintillation light used for triggering and neutrino event selection

See talk 757. The MicroBooNE Experiment by Ralitsa Sharankova for more details on the MicroBooNE LArTPC

HNL Production in BNB v Beam

Owen Goodwin 28/07/2020

- Production rate ∝ |U_{a4}|²
- K⁺ are the heaviest meson produced in large quantities in BNB. HNL mass < 495 MeV
- Fully simulate **HNL flux** from parent information in SM neutrino simulation.
 - Phase space change
 - No helicity suppression
 - Kinematically enhanced
 (more forward going)

Decay to $\mu\pi$ Pairs

The University of Manchester

Detector

- This analysis searches for $N \rightarrow \mu^{\pm} \pi^{\mp}$
 - Two tracks from shared vertex Ο with invariant mass of HNL
 - Decay rate ∝|U_{µ4}|² Ο
- For $|U_{u4}|^2 << 1$ decay length much longer than distance to MicroBooNE (470m)
- Consider non zero **[U₁₄]**, **([U₄₄]=0)**
- Relevant HNL produced by K⁺→µ⁺N
 - 260 MeV < Mass < 385 MeV 0
 - Final event rate ∝[U_{u4}] ⁴ Ο

HNLs in MicroBooNE

Owen Goodwin 28/07/2020

Timing

6000

HNL travel slower than SM neutrinos •

0.06

Fraction of total events 0.03 0.03 0.03 0.01

Neutrinos arrive in well separated beam spills which last for 1.6 µs •

BNB neutrinos

3500

- HNL $[M_N = 365 \text{ MeV}/c^2]$

3000

Around ~10% of HNLs arrive "late", after the neutrino spill. Fraction is mass dependent.

4000

4500

Event time [ns]

5000

550

BNB Trigger window HNL Trigger window

- Analysis focuses on late HNLs, no neutrino background
- Expect cosmic-ray background only. •

HNL Trigger

The University of Manchester

MANCH

Trigger on optical flashes in time with beam window

- Special **HNL trigger** operating since **June 2017** with window extending 33% longer than neutrino trigger
- This analysis uses 2e20 POT (~ a third of data collected with trigger)
- Identical HNL trigger runs when there is no beam spill to collect cosmics for background subtraction for data driven analysis

Finding HNL

MANCHESTER 1824 The University of Manchester

- Automatic event reconstruction uses Pandora pattern recognition* to create reconstructed particles.
 - Using same tools as many neutrino analyses in MicroBooNE
- Select events containing a reconstructed vertex associated with **exactly two**

reconstructed tracks.

HNL efficiency: 50% Cosmic rejection: 90%

Preselection & Cosmic Removal

- Preselection removes obvious cosmics and poorly reconstructed HNL
- Most effective cosmic removal cuts;
 - Containment cut: both tracks must end within the TPC
 - Angle cut: a cut on an almost-flat opening angle (160°)

Cosmics typically mimic HNL via a broken track or delta ray causing a vertex to be found.

- Preselection designed to have limited mass dependency
 - HNL efficiency : 45-50%
 - Cosmic rejection: 98.4%

BDT Training

- Train BDT to discriminate between HNL and cosmics for 10 HNL masses in studied range (260 MeV to 385 MeV).
- 5 input variables for each candidate
 - Opening angle
 - Total momentum
 - Angle from the beamline
 - Azimuthal angle
 - Invariant mass

BDT Training

- Train BDT to discriminate between HNL and cosmics for 10 HNL masses in studied range (260 MeV to 385 MeV).
- 5 input variables for each candidate
 - Opening angle
 - Total momentum
 - Angle from the beamline
 - Azimuthal angle
 - Invariant mass

MANCHESTER

The University of Manchester

Control Sample

Owen Goodwin 28/07/2020

MANCHESTER 1824

Validation of selection workflow is performed on **BNB v interaction data** (and simulation) to ensure we are sensitive to data/MC differences.

 One single additional cut to reject non-signal like events containing highly ionising tracks (protons)

Contains \mathbf{v} events with similar topology to HNL (mainly $\mathbf{CC} \mathbf{v}_{\mu} \mathbf{1}$ **pion**)

Evidence that if HNL are present in data we would select them (at the rate we expect)

Looking at Data

Owen Goodwin 28/07/2020

The University of Manchester

MANCHESTER

- Run BDT over data in beam correlated HNL window.
- Signal and background data • samples show good agreement across BDT score

Number of HNL

No excess observed in signal like region (BDT score < 0.95)

Set limits on $|U_{\mu4}|^2$ as a function of HNL mass (M_{N})

MANCH

- Uncertainties come predominantly from
 - Flux (kaon production at target, horn focusing uncertainty)
 - Trigger efficiency (PMT timing resolution)
 - Detector effects
 (Dynamically Induced
 Charge DIC, Space
 Charge Effects SCE)

- First search for HNLs in a LArTPC
- Observed and expected median upper limits at the 90% CL agree within 1 standard deviation over the entire mass range.
- Limits for Dirac case are identical but reduced by a factor of √2 as only N→μ⁻π⁺ possible and N_{events} ∝|U|⁴

- Published in PRD DOI: 10.1103/PhysRevD.101.052001
 HNL Exclusion Limit
- 10^{-6} Majorana 90% CL Dirac $U_{\mu 4}|^2$ limit at 10^{-7} Observed Expected Expected 1σ **MicroBooNE** POT: 2.0×10²⁰ Expected 2σ 10-8 -300 350 300 350 Mass [MeV] Mass [MeV]

Limit in Context

Owen Goodwin 28/07/2020

1824 The University of Manchester

MANCE

- Results similar sensitivity to NA62 and NuTeV for upper end of mass range
- PS191 and T2K currently set more constraining limits for most of mass range.
- MicroBooNE sets the most constraining limit at production threshold of 385 MeV

Summary & Outlook

The University of Manchester

- This is the first search for HNLs in a LArTPC
- More searches in MicroBooNE ongoing.
 - Collected almost **3 times** more data in the late window than used in this analysis
 - Selections for different final states ($N \rightarrow e\pi$, access to $|U_{e4}|$)
 - Can also search within neutrino beam
- Full SBN program will extend sensitivities
 - SBND ~110m from beam, higher flux.
 - ICARUS significantly larger TPC volume

Detector	Baseline (m)	Active LAr mass (tonnes)
SBND	110	112
MicroBooNE	470	87
ICARUS T-600	600	476

The University of Manchester

MANCHESTER 1824

Backup

Booster Neutrino Beam (BNB) Owen Goodwin 28/07/2020

^{roBoole}/50MeV/m²/10⁶POT ດີ

Φ(v) Φ

10⁻⁵

0.5

- Proton collisions with fixed target produce beam of predominantly π^{+/-} (>96 %) and K^{+/-} (<4%) which decay to neutrinos.
- Charge selection by focusing horn.
- Has been run in **neutrino mode** since 2015 when
 MicroBooNE came online

MANC

The University of Manchester

Majorana or Dirac

- HNLs could be a Majorana or Dirac particle
- Majorana HNL $\overline{N}=N$
 - N→μ⁺π⁻ and N→μ⁻π⁺ in equal number
 - Combination of μ⁺π⁻ and μ⁻ π⁺ isotropic in HNL rest frame.
- Dirac HNL
 - N→μ⁻π⁺ only
 - Decay rate half of Majorana
 - Asymmetric angles of decay in HNL rest frame (Muon more likely to be in direction of beam).

Owen Goodwin 28/07/2020

Work with Majorana assumption but reweight to Dirac distribution to produce results for both scenarios

1824 The University of Manchester

- Pre-selection requirements serve the double purpose of **increasing S/B ratio** and **improving reconstruction quality** of HNL candidates for further discrimination via **BDT** application
- Variables chosen to have **minimum** dependency on HNL mass.
- Mass-dependent information is reserved for BDT, which is **trained for each HNL mass**.

Pre-selection requirements			
Name	Variable Used	Requirement	
Fiducial volume	HNL vertex <i>x</i> coordinate	>12 cm <i>and</i> < 244.35 cm	
	HNL vertex y coordinate	> -80.5 cm <i>and</i> < 80.5 cm	
	HNL vertex z coordinate	(> 25 cm <i>and</i> < 675 cm) <i>or</i>	
		(> 775 cm <i>and</i> < 951.8 cm)	
Vertex-track	Distance between vertex	< 5 cm	
distance	and farthest track start point		
Minimum number	Number of hits	> 30 hits	
of hits	of smallest track	on collection plane	
Flash PE	PE of largest flash in event	> 0 PE	
Vertex-flash	2-d distance between HNL	< 150 cm	
distance	and largest flash	< 150 CIII	
Track containment	x coordinate of end point	>12 cm and < 240 cm	
	farthest from centre	>12 cm unu < 240 cm	
	y coordinate of end point	> 09 orm and < 09 orm	
	farthest from centre	> -58 cm and $<$ 58 cm	
	z coordinate of end point	> 15 cm and < 1010 cm	
	farthest from centre	> 15 cm <i>unu</i> < 1010 cm	
Opening angle	3-d angle between tracks	< 2.8 radians (160°)	
Invariant mass	Range-calculated HNL	< 0.5 GeV	
	candidate invariant mass		

MANCHESTER 1824 The University of Manchester

- Consider non zero |U_{µ4}|, (|U_{e4}|=0)
- HNL produced by $K^+ > \mu^+ N$
- Flux calculated using parent meson (kaons) information from neutrino flux simulation

for a mass M_N

- a. Calculate HNL kinematics for each kaon decay
- b. Weight by ratio of HNL and neutrino branching width
- c. Weight by probability of HNL intersecting TPC.

Adjusts for phase space change and enhancement due to helicity unsuppression

Limit Setting

MANCHESTER 1824 The University of Manchester

Signal Depleted