Polarization effects in the search for dark vector boson in e⁺ e⁻ colliders

by Guey-Lin Lin National Chiao-Tung University, Taiwan Fei-Fan Lee, GLL and Vo Quang Nhat, to be submitted

- Growing interests in searching for DM related phenomenon with high statistics and high precision measurements.
- Such phenomenon has to do hidden sector*, assumed to interact with the visible sector through a messenger particle.
- A popular proposal for such a messenger is the so-called dark photon**, which mixes with U(1)_Y in SM.

^{*}B. Holdom, Phys. Lett. 166B, 196 (1986); P. Galison and A. Manohar, Phys. Lett. 136B, 279 (1984)

^{**}J. Alexander et al., arXiv:1608.08632 [hep-ph]

- Such a mixing induces EM couplings between dark photon and SM fermions, which generate rich phenomenology.
- The search for light boson with the reaction e⁺e⁻ −> A'+gamma has been proposed*.
- Many new proposals to search for dark photons with the above process—see the list next page
- These proposals are based upon either fixed target or electronpositron collider

*C. Boehm and P. Fayet, Nucl. Phys. B 683, 219 (2004); N. Borodatchenkova, D. Choudhury and M. Drees, Phys. Rev. Lett. 96, 141802 (2006); P. Fayet, Phys. Rev. D 75, 115017 (2007).

- V. Kozhuharov [PADME Collaboration], Nuovo Cim. C 40, no. 5, 192 (2017)
- T. Araki et al., Phys. Rev. D 95, no. 5, 055006 (2017)
- B. Wojtsekhowski et al., JINST 13, no. 02, P02021 (2018)
- I. Alikhanov and E. A. Paschos, Phys. Rev. D 97, no. 11, 115004 (2018)
- L. Marsicano et al., Phys. Rev. D 98, no. 1, 015031 (2018)
- J. Jiang et al., Eur. Phys. J. C 78, no. 6, 456 (2018)

The dark photon interaction with EM current is given by

$$\mathcal{L}_{\text{int}} = \varepsilon_{\gamma} e J_{\text{em}}^{\mu} A_{\mu}' \quad \varepsilon_{\gamma} \equiv \varepsilon \text{ in}$$

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B^{\mu\nu} A_{\mu\nu}' - \frac{1}{4} A_{\mu\nu}' A^{\prime\mu\nu}'$$

- The neutral current interaction is suppressed in the limit M_{A'} << M_Z
- The detection of A' determines the mixing parameter and the mass of the dark photon.
- On the other hand, there could be other mixing between dark boson and SM gauge bosons, such as*

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} M_Z^2 Z_{\mu}^0 Z^{0\mu} - \delta m^2 Z_{\mu}^0 A^{\prime\mu} + \frac{1}{2} M_{A^{\prime}}^2 A^{\prime}_{\mu} A^{\prime\mu}$$

*H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 85, 115019 (2012)

 With the above mass mixing, an independent neutral current coupling between dark boson and SM fermions is induced:

$$\mathcal{L}_{\mathrm{int}} = \varepsilon_Z \frac{g}{\cos \theta_W} J_{\mathrm{NC}}^{\mu} A_{\mu}' \text{ with } \varepsilon_Z \equiv \delta m^2 / M_Z^2$$

 Considering both mixings, the interaction between dark boson (renamed as Z_d from now on) and SM fermions becomes

$$e\varepsilon \bar{f}(g_{f,V}\gamma_{\mu}+g_{f,A}\gamma_{\mu}\gamma_{5})fZ_{d}^{\mu}$$

- In the search for Z_d with $e^+e^- -> Z_d + gamma$, can one determine the relative strength of vector and axial-vector couplings?
- The key is on the polarization of Z_d

Outline

- Heuristic derivation of Z_d-fermion interactions
- Ward-Takahashi identity and the polarization of Z_d in e⁺e⁻ −>
 Z_d+gamma
- Differential cross section of e⁺e⁻ −> Z_d+gamma for each polarization of Z_d and the decay distribution of Z_d −>I⁺ I⁻
- Searching for Z_d by e⁺e⁻ −> Z_d+gamma and Z_d decaying to muon pairs in BaBar and Belle II
- Summary

Heuristic derivation of Z_d-fermion interactions

The mixing terms give two point functions

$$i\Pi^{\mu\nu}_{AZ_d} = i\varepsilon k^2 g^{\mu\nu},$$

$$i\Pi^{\mu\nu}_{ZZ_d} = -i(\varepsilon \tan \theta_W k^2 + \delta m^2) g^{\mu\nu},$$

The EM interactions of dark boson

$$ieJ_{\rm em}^{\alpha} \frac{-ig_{\alpha\mu}}{k^2} i\varepsilon k^2 g^{\mu\nu} Z_{d\nu} = ie\varepsilon J_{\rm em}^{\nu} Z_{d\nu}.$$

The Neutral-Current interactions of dark boson

$$\begin{split} &\frac{ig}{\cos\theta_W}J_{\mathrm{NC}}^{\alpha}\frac{-i}{k^2-M_Z^2}(g_{\alpha\mu}-\frac{k_{\alpha}k_{\mu}}{M_Z^2})\cdot(-i)(\varepsilon\tan\theta_Wk^2+\delta m^2)g^{\mu\nu}Z_{d\nu}\\ &=\frac{-ig}{\cos\theta_W}J_{\mathrm{NC}}^{\nu}Z_{d\nu}\frac{(\varepsilon\tan\theta_WM_{Z_d}^2+\delta m^2)}{(M_{Z_d}^2-M_Z^2)}. \end{split}$$

Heuristic derivation of Z_d-fermion interactions

In the $\lim_{Z_d} \ll M_Z$

$$\mathcal{L}_{\text{int}} = \left(\varepsilon_{\gamma} e J_{\text{em}}^{\mu} + \varepsilon_{Z} \frac{g}{\cos \theta_{w}} J_{\text{NC}}^{\mu}\right) Z_{d\mu},$$
$$\varepsilon_{Z} \equiv \delta m^{2} / m_{Z}^{2}.$$

Ward-Takahashi identity and Z_d polarization

Z_d is expected to be transversely polarized for dark boson mass much less than CM energy

$$=0 \text{ for } m_{\rm e} ->0$$

BaBar search result and Belle II sensitivity to

$$A' \to e^+ e^-, \mu^+ \mu^-, hh$$

The Belle II physics book, arXiv:1808.10567

Take $\varepsilon = 7 \times 10^{-4}$; $m_{Z_d}/\sqrt{s} = 0.1, 0.3, \text{ and } 0.8.$

J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 113, no. 20, 201801 (2014)

Polarized amplitudes

θ the direction of Z_d with respect to e⁻ direction in CM frame

$$\begin{split} |\bar{\mathcal{M}}|_{+}^{2} &= \frac{8\pi^{2}\alpha^{2}\varepsilon^{2}}{(t-m_{e}^{2})(u-m_{e}^{2})} \bigg[(1+\cos^{2}\theta)(s^{2}+m_{Z_{d}}^{4}) + \rho\cos\theta(s-m_{Z_{d}}^{2})^{2} \bigg], \\ |\bar{\mathcal{M}}|_{-}^{2} &= \frac{8\pi^{2}\alpha^{2}\varepsilon^{2}}{(t-m_{e}^{2})(u-m_{e}^{2})} \bigg[(1+\cos^{2}\theta)(s^{2}+m_{Z_{d}}^{4}) - \rho\cos\theta(s-m_{Z_{d}}^{2})^{2} \bigg], \\ |\bar{\mathcal{M}}|_{\parallel}^{2} &= \frac{8\pi^{2}\alpha^{2}\varepsilon^{2}}{(t-m_{e}^{2})(u-m_{e}^{2})} (4m_{Z_{d}}^{2}s\sin^{2}\theta), \end{split}$$

where
$$\rho = 4g_{f,V}g_{f,A}$$
. $g_{f,V}^2 + g_{f,A}^2 = 1$

m_e is neglected except in the denominator

Polarized differential cross sections

$$\frac{d\sigma_i}{d\cos\theta} = \frac{1}{32\pi s} \left(1 - \frac{m_{Z_d}^2}{s}\right) |\mathcal{M}|_i^2$$

Differential cross section for longitudinal state is clearly suppressed by $m_{Z_d}^2/s$

Polarized differential cross sections-numerical results

 $\varepsilon = 7 \times 10^{-4}$; $\sqrt{s} = 10.58$ GeV CM frame

V-A coupling

Polarized differential cross sections-numerical results

Polarized differential cross sections-numerical results

Longitudinal polarization is now equally important Helicity +1 and -1 states getting closer to each other

Z_d decay distributions and the parity violation parameter $\rho \equiv 4g_{l,V}g_{l,A}$

Angular distributions of Zd decays

 θ_d the angle between I⁻ direction in the Z_d rest frame and the Z_d boost direction

Helicity +1 state

$$\frac{d\Gamma_{l+l-}^+}{d\cos\theta_d} = \frac{\alpha\varepsilon^2 y}{2m_{Z_d}} \left[2g_{l,V}^2 m_l^2 + (1 + \cos^2\theta_d) p_l^2 + \rho\cos\theta_d E_l p_l \right]$$

Helicity -1 state

$$\frac{d\Gamma_{l+l-}^{-}}{d\cos\theta_d} = \frac{\alpha\varepsilon^2 y}{2m_{Z_d}} \left[2g_{l,V}^2 m_l^2 + (1 + \cos^2\theta_d) p_l^2 - \rho\cos\theta_d E_l p_l \right]$$

Longitudinal state

$$\frac{d\Gamma_{l^+l^-}^{\parallel}}{d\cos\theta_d} = \frac{\alpha\varepsilon^2y}{m_{Z_d}} \left[g_{l,V}^2 m_l^2 + \sin^2\theta_d p_l^2 \right]$$

$$y = \sqrt{1 - 4m_l^2 / m_{Z_d}^2}$$

Forward-backward asymmetry of leptons from Z_d decays; Z_d produced in the backward direction $-1 \le \cos \theta \le 0$

$$m_{Z_d} = 0.1\sqrt{s}, \beta \equiv p_l/E_l = 0.1$$

Forward-backward asymmetry of leptons from Z_d decays Z_d produced in the backward direction $-1 \le \cos \theta \le 0$

$$m_{Z_d} = 0.1\sqrt{s}, \beta \equiv p_l/E_l = 1$$

Forward-backward asymmetry of leptons from Zd decays

$$m_{Z_d} = 0.8\sqrt{s}, \beta \equiv p_l/E_l = 1$$

Double angular distributions; correlation between Z_d and lepton directions

$$\frac{d^2P}{d\kappa d\xi} = \frac{1}{\sigma_T \cdot \Gamma_{l^+l^-}} \sum_i \left(\frac{d\sigma^i}{d\cos\theta}\right) \cdot \left(\frac{d\Gamma^i_{l^+l^-}}{d\cos\theta}\right) \quad \text{i: polarization index}$$

$$= Q_0(\kappa, \xi) + Q_2(\kappa, \xi)\rho^2$$

$$\kappa = \cos \theta, \ \xi = \cos \theta_d$$

 Q_0 : even in both κ and ξ

Q₂: odd in both κ and ξ

$$Q_2 \rho^2 \sim (p_l/E_l)\rho^2 (1 - m_{Z_d}^2/s)^2 \kappa \xi/(1 - \kappa^2)$$

Changes sign when $\kappa \cdot \xi$ changes sign; Reaching to maximum for ultra-relativistic lepton and the limit $s \gg m_{Z_d}^2$

Signal event asymmetry

$$\kappa = \cos \theta, \ \xi = \cos \theta_d$$

$$\mathcal{A}_{PN} \equiv \frac{S(\kappa \cdot \xi > 0) - S(\kappa \cdot \xi < 0)}{S(\kappa \cdot \xi < 0) + S(\kappa \cdot \xi > 0)} = \frac{3}{4} \left(\frac{\rho^2}{4}\right) \frac{-\ln\left(1 - \kappa_m^2\right)}{\ln\left(\frac{1 + \kappa_m}{1 - \kappa_m}\right) - \kappa_m}$$

 $\kappa_m : \text{maximum of } \kappa \qquad -\kappa_m : \text{minimum of } \kappa$

 ξ : fully integrated

$$\kappa_m = 0.95 \Rightarrow \mathcal{A}_{PN} = 0.64 \times (\rho^2/4)$$

$$\kappa_m = 0.80 \Rightarrow \mathcal{A}_{PN} = 0.55 \times (\rho^2/4)$$

- (1) This parameter has to be calculated with actual detector acceptance
- (2) The asymmetry will be diluted by the QED background $\rho = 0$
- (3) How significant is this asymmetry statistically?

Prospect of probing parity violation parameter ρ at Belle II

Belle II calorimeter angular coverage* $12.4^{\circ} \leq \theta_{\gamma}^{\mathrm{lab}} \leq 155.1^{\circ}$ Corresponding photon rapidity range $-1.51 \leq \eta_{\gamma}^{\mathrm{lab}} \leq 2.22$

Boost velocity from LAB to CM

$$eta_{
m CM} = (E_{e^-} - E_{e^+})/(E_{e^-} + E_{e^+}) = 3/11$$
7GeV 4GeV

$$\eta_{\gamma}^{\text{CM}} = \eta_{\gamma}^{\text{lab}} + \ln((1 - \beta_{\text{CM}})/(1 + \beta_{\text{CM}}))/2 \Rightarrow -1.79 \le \eta_{\gamma}^{\text{CM}} \le 1.94$$

KL-muon detector angular coverage $25^{\circ} \le \theta_{\mu^{\pm}}^{\text{lab}} \le 150^{\circ} \Rightarrow -1.60 \le \eta_{\mu^{\pm}}^{\text{CM}} \le 1.23$

*I. Adachi *et al.* [Belle II], Nucl. Instrum. Meth. A 907, 46-59 (2018)

BaBar search result and Belle II sensitivity to

$$A' \to e^+ e^-, \mu^+ \mu^-, hh$$

The Belle II physics book, arXiv:1808.10567

J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 113, no. 20, 201801 (2014)

Belle II sensitivity is comparable to BaBar results for the same integrated luminosity

Calculating \mathcal{A}_{PN} in Belle II for two benchmark Z_d masses*

$$m_{Z_d} = 0.5 \text{GeV}$$
 $m_{Z_d} = 2.0 \text{GeV}$

$$\varepsilon_{\gamma} = \varepsilon_{Z}(\rho = 1.74)$$
 $\mathcal{A}_{PN} = 0.38$ $\mathcal{A}_{PN} = 0.36$

$$egin{aligned} arepsilon_{\gamma} &= arepsilon_{Z} an heta_{W} & \mathcal{A}_{ ext{PN}} &= 0.49 \ (
ho = -2) ext{ V-A} & earepsilon ar{f}(g_{f,V}\gamma_{\mu} + g_{f,A}\gamma_{\mu}\gamma_{5}) f Z_{d}^{\mu} \ \mathcal{L}_{ ext{int}} &= \left(arepsilon_{\gamma} e J_{ ext{em}}^{\mu} + arepsilon_{Z} rac{g}{\cos heta_{w}} J_{ ext{NC}}^{\mu}
ight) Z_{d\mu}, &
ho &= 4 g_{f,V} g_{f,A} \left(g_{f,V}^{2} + g_{f,A}^{2} = 1
ight) \end{split}$$

*CalcHEP version 3.7.5, A. Pukhov, A. Belyaev, and N. Christensen, 2019

Detection significance and asymmetry parameter

$$\chi^2 = 2\left(n\ln(\frac{n}{w}) + w - n\right)$$
 $n:$ observed event number $w:$ expected event number

$$n=S+B$$
, $w=B$ Detection significance $\frac{S'}{\sqrt{B}} \cdot \sigma$

Simultaneous fittings to $\kappa \cdot \xi > 0$ and $\kappa \cdot \xi < 0$ event bins

$$\chi^{2} = 2\left(n_{a}\ln(\frac{n_{a}}{w_{a}}) + w_{a} - n_{a}\right) + 2\left(n_{b}\ln(\frac{n_{b}}{w_{b}}) + w_{b} - n_{b}\right)$$

$$n_{a,b} = S_{a,b} + B_{a,b} \quad (S_{a} + S_{b} = S, \ B_{a} + B_{b} = B)$$

$$\mathcal{A}_{PN} = (S_{a} - S_{b})/(S_{a} + S_{b})$$

$$S = \sqrt{S_{a} - S_{b}}$$

Detection significance
$$\frac{S}{\sqrt{B}}\sqrt{1+\mathcal{A}_{\mathrm{PN}}^2}\cdot\sigma$$

General dark boson scenario versus dark photon case

Fit the observed events by dark photon plus background

$$\chi^{2} = 2\left(n_{a}\ln(\frac{n_{a}}{w_{a}}) + w_{a} - n_{a}\right) + 2\left(n_{b}\ln(\frac{n_{b}}{w_{b}}) + w_{b} - n_{b}\right)$$

The minimum of the χ^2 happens at $w_a = w_b = (n_a + n_b)/2$

$$\chi^2_{
m dp,min} = rac{S^2}{B} \cdot \mathcal{A}^2_{
m PN}$$

 $\chi^2 = 0$ for setting $w_{a,b} = n_{a,b}$ (input true model)

Dark photon less favored by $\sqrt{\chi^2_{
m dp,min}} \cdot \sigma \equiv \frac{S \mathcal{A}_{
m PN}}{\sqrt{R}} \cdot \sigma$

compared to input true model

Numerical results with Belle II detector angular coverage

Cross section* for QED background $e^+e^- \to \gamma \mu^+ \mu^-$ with photon and muon rapidity ranges and ~5 MeV energy resolution for the invariant mass $M_{\mu^+\mu^-}$

$$\sim 7.76 \times 10^{-2} \; \mathrm{pb}$$
 for $m_{Z_d} = 0.5 \; \mathrm{GeV}$ 1.5 MeV to 8 MeV energy resolution taken $\sim 2.48 \times 10^{-2} \; \mathrm{pb}$ for $m_{Z_d} = 2.0 \; \mathrm{GeV}$ in BaBar analysis

Assume a 5 σ detection of dark boson signature at 50 ab⁻¹

$$S = 9850, \ B = 3.88 \cdot 10^6 \qquad m_{Z_d} = 0.5 \ \mathrm{GeV}$$
 $S = 5700, \ B = 1.30 \cdot 10^6 \qquad m_{Z_d} = 2.0 \ \mathrm{GeV}$

*CalcHEP version 3.7.5, A. Pukhov, A. Belyaev, and N. Christensen, 2019

Summary on event numbers and detection significance

Model Parameter (ρ)	0.00		1.74		2.00	
$(m_{Z_d}/{\rm GeV})$	0.5	2.0	0.5	2.0	0.5	2.0
$S(\kappa \cdot \xi > 0)$	4925	2850	6800	3875	7338	4233
$S(\kappa \cdot \xi < 0)$	4925	2850	3050	1825	2512	1467
Det. Sig.	5.0σ	5.0σ	5.3σ	5.3σ	5.6σ	5.6σ
$\sqrt{\chi^2_{ m dp,min}}\sigma$	0.0	0.0	1.9σ	1.8σ	2.5σ	2.5σ

Conclusions

- We have discussed the search for dark boson with the process
 e⁺e⁻ -> Z_d+gamma in the e⁺e⁻ collider
- The dark boson is shown to be transversely polarized when the dark boson mass is much less than the CM energy
- We analyze the muon angular distributions from polarized Z_d decays and define the asymmetry parameter \mathcal{A}_{PN} which is proportional to the square of parity violation parameter $\rho \equiv 4g_{l,V}g_{l,A}$.
- We calculate the asymmetry parameter with Belle II detector angular coverage and discuss its consequences on the dark boson search.