Charged and neutral Higgs bosons in final states with 6 bottom quarks

with E. Lunghi, N. McGinnis and S. Shin arXiv:2005.07222 [hep-ph] arXiv:1901.03701 [hep-ph] arXiv:1812.05240 [hep-ph]

Radovan Dermisek

Indiana University, Bloomington

Simple Extensions of the Standard Model

Standard Model

$$3 \times \{q, \overline{u}, \overline{d}, l, \overline{e}\}, g, \gamma, Z, W^{\pm}, h$$

more Higgses? 2HDM?more matter?
$$H, A, H^{\pm}$$
 $Q, \bar{U}, \bar{D}, L, \bar{E}$
+
 $\bar{Q}, U, D, \bar{L}, E$

Appear in many models: SUSY, composite Higgs, phenomenologically motivated extensions...

My personal motivation: exactly this particle content + SUSY provide an understanding of the values of all large couplings in the SM from the IR fixed point behavior from random large boundary conditions R.D. and N. McGinnis, arXiv:1812.05240 [hep-ph]

Radovan Dermisek

7 largest SM couplings from random b.c.

Higgs quartic given by gauge couplings at any scale:

$$\lambda_h(Q) \equiv \frac{g_2^2(Q) + (3/5)g_1^2(Q)}{4} \cos^2 2\beta$$

the plots assume: $tan \beta = 40$

7 largest SM couplings from random b.c.

Radovan Dermisek

7 largest SM couplings from random b.c.

Optimizing parameters related to scales

For random unrelated (or unified) parameters:

 $\alpha_1(M_G), \alpha_2(M_G), \alpha_3(M_G) \in [0.1, 0.3]$ $y_t(M_G), y_b(M_G), y_t(M_G), Y_V(M_G) \in [1, 3]$

three parameters,

 $M_G, M, \tan\beta,$

can be optimized so that none of the seven observables is more than 25% (or 15%) from the measured values.

Further optimizing Y_V to obtain the required overall scale of Yukawa couplings, all 7 observables are within 11% (or 7.5%) from their measured values.

Radovan Dermisek

Simple Extensions of the Standard Model

Standard Model

$$3 \times \{q, \overline{u}, \overline{d}, l, \overline{e}\}, g, \gamma, Z, W^{\pm}, h$$

more Higgses? 2HDM? more matter?

$$H, A, H^{\pm}$$
 $Q, \overline{U}, \overline{D}, L, \overline{E}$
 $+$
 $\overline{Q}, U, D, \overline{L}, E$

Many searches for individual new particle; but searching for their combined signatures can be more advantageous than separate searches!

Radovan Dermisek

Heavy Higgses in vectorlike quark decays

Large production cross sections at the LHC:

 $\sigma(m_Q = 1 \text{ TeV}) \simeq 50 \text{ fb}$ $\sigma(m_Q = 2 \text{ TeV}) \simeq 0.2 \text{ fb}$

(model independent, just QCD)

Heavy Higgses in vectorlike quark decays

Large production cross sections at the LHC:

R.D., E. Lunghi and S. Shin, arXiv:1901.03701

Heavy Higgses in vectorlike quark decays

heavy Higgses are effectively pairproduced with QCD size cross sections 6t, 4t2b, 2t4b, 6b final states have tiny irreducible SM background

Many possible ways to search, 6b in final states is common to all!

Radovan Dermisek

Heavy Higgses in 6b final states

Reach of a search strategy requiring at least 5 bottom quarks:

details in R.D., E. Lunghi, N. McGinnis and S. Shin, arXiv:2005.07222 [hep-ph]

LHC with 139 fb⁻¹ sensitive to heavy Higgses up to ~1.6 TeV HL-LHC sensitive to heavy Higgses up to ~2 TeV

Conclusions

Models with more Higgses and vectorlike matter are among the simplest extensions of the standard model, and can provide understanding of values of 7 largest couplings in the SM.

Interesting combined signatures of heavy Higgses and VQs:

$$\begin{array}{ll} gg \rightarrow t_4 \, t_4 & gg \rightarrow b_4 \, b_4 \\ t_4 \rightarrow Ht \, , H^{\pm}b & b_4 \rightarrow Hb \, , H^{\pm}t \end{array}$$

or combinations with the usual decay modes through Z, W and h;

some signatures the same as in other models: various top partners, composite Higgs, Z', W' (reach of suggested searches can be easily interpreted in such models).

- LHC with $139 \, \text{fb}^{-1}$ sensitive to heavy Higgses up to ~1.6 TeV
- HL-LHC sensitive to heavy Higgses up to ~2 TeV