

Probing baryogenesis using neutron-anti-neutron oscillation

Kåre Fridell

Technische Universität München kare.fridell@tum.de

In collaboration with J. Harz, C. Hati

Based on arXiv:2008:XXXX

30.07.20 ICHEP 2020

Baryon asymmetry

Baryogenesis deals with the question of why matter exists in the Universe

$$\eta_B^{\text{obs}} = (6.20 \pm 0.015) \times 10^{-10}$$

 $\eta_B \equiv \frac{n_B}{n_{\gamma}}$

Planck collaboration (2018)

Baryon asymmetry of the Universe (BAU): There are more baryons than anti-baryons

Three conditions: Sakharov conditions

- Baryon number (B) violation
- C and CP violation
- Out-of-equilibrium interactions

In the Standard Model (SM):

- √ Electroweak transitio

$$\checkmark$$
 Sphalerons \checkmark CKM matrix $\eta_B \approx 10^{-19}~{
m X}$

⇒ Need Beyond SM (BSM) physics to explain the BAU

How can baryogenesis be probed experimentally?

Search for B violation

B violation:

Experimental searches are relatively model-independent Would provide a clear sign of BSM physics

Neutron-anti-neutron oscillation

$$\Delta B = -2$$

Proton decay

$$p \to X$$

$$\Delta B = -1$$

Dinucleon decay

$$(n)$$
 n $\to X$

$$\Delta B = -2$$

Out-of-equilibrium dynamics and C and CP violation: Can be connected to B violation in a given model

Neutron-anti-neutron oscillation

See also other talks @ ICHEP 2020

ORNL/ESS (Broussard)
MicroBooNE/DUNE (Hwa)
MURMUR (Stasser)

Current:

▲ Bound:

$$\tau_{n\overline{n}} \ge 2.7 \times 10^8 \text{ s}$$

Super-Kamiokande collaboration (2011)

Free:

$$\tau_{n\overline{n}} \ge 0.86 \times 10^8 \text{ s}$$

ILL, Baldo-Ceolin et. al (1994)

Future:

▲ DUNE (bound):

$$\tau_{n\overline{n}} \sim 7 \times 10^8 \text{ s}$$

NNBAR (free):

$$\tau_{n\overline{n}} \sim 3 \times 10^9 \text{ s}$$

Exciting future prospects

Effective field theory (EFT)

Neutron-anti-neutron oscillation can be realized at tree level by dim 9 operators

$$\mathcal{L}_{\mathrm{WET}}^{\overline{n}n} = \sum_{i} C_{i} \mathcal{O}_{i} + \mathrm{h.c.}$$

$$\mathcal{O}_{1} = (\psi P_{R} \psi^{c})(\psi P_{R} \psi^{c}) (\psi P_{R} \psi^{c})$$

$$\mathcal{M}_{i}(\mu) = \langle \overline{n} | \mathcal{L}_{\mathrm{WET}}^{n\overline{n}} | n \rangle = |C_{1}(\mu) \mathcal{M}_{1}(\mu)|$$

$$\mathcal{M}_{i}(\mu) = \langle \overline{n} | \mathcal{O}_{i}(\mu) | n \rangle \quad \text{Rinaldi et al (2019)}$$

Wilson coefficient: $C_i \propto \frac{1}{\Lambda^5}$ $\Lambda = \text{New Physics (NP) scale } \rightarrow \text{encodes all the effects of heavy NP.}$

Baryogenesis: effective washout

A baryon asymmetry can be created at a high scale but later washed out

Washout: B violating process that removes B asymmetry \rightarrow Reduces η_B

Deppisch et al (2018)

Can be estimated by comparing width to Hubble rate $\Gamma \sim H, \quad \Gamma \propto \left| C_i \mathcal{M}_i \right|^2 \propto \left| \frac{1}{\Lambda^5} \right|^2$

Diquarks

$$\mathcal{L} \supset f^{dd} X_{dd} d_R d_R + f^{ud} X_{ud} u_R d_R + \lambda v_{B-L} X_{dd} X_{ud} X_{ud} + \text{h.c.} \qquad m_{X_{dd}} > m_{X_{ud}} > m_d$$

$$m_{X_{dd}} > m_{X_{ud}} > m_d$$

Field	Spin	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	B
X_{dd}	0	$(6,\overline{3})$	1	$+\frac{2}{3}$	$-\frac{2}{3}$
X_{ud}	0	$(6,\overline{3})$	1	$-\frac{1}{3}$	$-\frac{2}{3}$

Very common in GUTs, e.g. $SO(10), E_6$

Babu et al (2012), Aulakh et al (2005), London et al (1986) +

Neutron-anti-neutron oscillation

CP violation/B violation/out-of-equilibrium

Dinucleon decay

Dinucleon decay can occur with 3rd generation quarks at two-loop level, while neutron-anti-neutron oscillation requires three loops.

Frejus: $\tau < 3.4 \times 10^{30} \text{ yr}$

Super-Kamiokande: τ < 4.04×10³² yr

Hyper-Kamiokande: τ < 10³⁴ yr

LHC

Puts constraints on diquark couplings to 3rd gen quarks

LHC is already probing (5-10) TeV range

Excellent complementarity to n-\bar{n} oscillation/dinucleon decay

$$\mathcal{L} \supset f^{ud} X_{ud} u_R d_R$$

For
$$f^{ud} = 1.0$$
, $m_{X_{ud}} \lesssim 5.4$ TeV disfavored

For
$$f^{ud} = 0.3$$
, $m_{X_{ud}} \lesssim 4.7$ TeV disfavored

Chivukula et al (2018) For
$$\sqrt{s} = 8 \text{ TeV}$$
 Pascual-Dias et al (2020) +

CMS Collaboration (2018)

Asymmetry generation

$$\frac{d\eta_B}{dT} = \epsilon \times D(\eta_{X_{dd}} - \eta_{X_{dd}}^{\text{eq}}) - \eta_B W$$

CP asymmetry:
$$\epsilon \sim \frac{\Gamma(X_{dd}^* \to X_{ud}X_{ud}) - \Gamma(X_{dd} \to X_{ud}^*X_{ud})}{\Gamma(X_{dd}^* \to X_{ud}X_{ud}) + \Gamma(X_{dd} \to X_{ud}^*X_{ud}^*)}$$

Decay:
$$D \sim \Gamma(X_{dd}^* \to X_{ud}X_{ud})$$

Washout:
$$W \sim \Gamma(X_{dd}X_{ud} \to u_R\overline{d}_R^c) + \Gamma(\dots) + \&c.$$

$$W = \frac{T}{m_{X_{dd}}} \frac{\Gamma}{H}$$

$$\eta_i \equiv \frac{n_i}{n_\gamma}$$

Washout

Washout is strong when $\Gamma > H$

$$W = \frac{T}{m_{X_{dd}}} \frac{\Gamma}{H}$$

KF, Harz, Hati arXiv:2008:XXXX

Using couplings of order one and

$$m_{X_{ud}} = 5 \text{ TeV}$$

$$v_{B-L} = (6/5)m_{X_{dd}}$$

Two benchmark scenarios:

TeV scale

$$m_{X_{dd}} > m_{X_{ud}} \gg m_d$$

High scale

$$m_{X_{dd}} \gg m_{X_{ud}} \gg m_d$$

Washout roughly agrees with the EFT approach

Results for high scale baryogenesis

KF, Harz, Hati arXiv:2008:XXXX

A signal @ DUNE/NNBAR would disfavor high scale baryogenesis for a large part of the parameter space

Results for TeV scale baryogenesis

Observable dinucleon decay rate requires large couplings

→ too strong washout → underabundance

An observation of a dinucleon signal can rule out TeV scale baryogenesis

However, for smaller values of couplings, TeV scale baryogenesis can still work

Benchmark:

$$m_{X_{dd}} = 50 \times m_{X_{ud}}$$

 $v_{B-L} = (6/5) \times m_{X_{dd}}$
 $\epsilon = 1$

Blue areas: correct or higher abundance

$$\mathcal{L} \supset \lambda v_{B-L} X_{dd} X_{ud} X_{ud}$$

Conclusion

- Interplay of diquark searches at the LHC with neutron-anti-neutron oscillation or dinucleon decay has excellent prospects to probe baryogenesis
- For high scale baryogenesis a large part of the parameter space would be disfavored by a signal @ DUNE/NNBAR
- TeV scale baryogenesis would be disfavored by an observation of a dinucleon signal
- For smaller values of couplings (nonobservable at experiments), TeV scale baryogenesis is still feasible
- There are bright experimental future prospects @ DUNE/NNBAR, therefore it is timely to study neutron-anti-neutron oscillation

Thanks for listening

Backup: Indirect vs Direct

Neutron-anti-neutron oscillation

Indirect search: (bound)

Direct search: (free)