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๏ Introduction 

๏ Layout & Predictions 

๏ New physics opportunities 

๏ Experimental design 

๏ Summary

Outline
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numeric const.a =

non-perturbative 
with ϵ ⟶ ϵS

What happens in strong fields?

3

The probability to materialise one 
virtual  pair from the vacuume+e−

ϵS =
m2

e c3

eℏ
≃ 1.32 ⋅ 1018 V

m
The Schwinger critical field (1951)

P ∼ exp (−a
ϵS

ϵ )

ϵ
V

Electric field ϵ

⟶ ∞
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๏ Outside observer: the BH has radiated a particle so the energy must come from it 
๏ Looking at the system: the BH energy has decreased so its mass must decrease

The Hawking equivalent
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History & Impact

5

Neutron stars Hawking radiation Electrical breakdown Colliders

1930s
1951

1990s

2020s

First discussions by Sauter, Heisenberg & Euler

First calculations by Schwinger: ϵS

E144 at SLAC first to approach *ϵS

LUXE: reach  and beyond*ϵS

๏ never been reached in a clean environment* 
๏ test basic predictions in a novel QM regime 
๏ potential for seeing effects of new physics  
๏ relevant to many areas in physics

{
Inflation

* The Schwinger’s 
field may be 
approached/reached 
only within a 
highly-boosted 
system, e.g. the one  
produced at LUXE. 
See next slides
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LUXE physics in a nutshell

e + nγL → e′ +γC

γC+nγL → e+e−

Nonlinear Compton scattering

Nonlinear Breit-Wheeler pair production

Laser Und XFEL Experiment

γB+nγL → e+e−

Bremss’-driven, Nonlinear 
Breit-Wheeler pair production1 2

High-power 
laser generates 

large E-field

High energy 
electrons 
(XFEL)

“see” a larger 
field by  

in its rest frame
Eγ /me

For more details on the theory see:
IJMP A, Vol. 33, No. 13 (2018) 1830011
Phys. Rev. D 99, 036008 (2019)

https://www.worldscientific.com/doi/pdf/10.1142/S0217751X18300119
https://arxiv.org/abs/1807.10670
https://www.worldscientific.com/doi/pdf/10.1142/S0217751X18300119
https://arxiv.org/abs/1807.10670
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LUXE @ the Eur.XFEL

7

DESY

ϵ → ϵ ×
Eγ

me
∼ ϵ ×

10 GeV
0.5 MeV

∼ ϵ × 104

Electrons
Ee up to 17.5 GeV, with Ne = 1.5-6×109 e-/bunch and a bunch charge up to 1.0 nC,

~1/2700 bunches/train, 1+9 Hz (collisions + background), spot rxy=5 µm, lz=24 µm

Laser
Ti-Sapphire, 800 nm, 40 TW(⟶350),  ~1 J(⟶10), 25-30 fs pulse, 1-10 Hz rate 

 8×8⟶3×3 µm2 FWHM spot with up to I~ 3.5×1019 W/cm2(⟶1.5×1021), 60% loss 

Synergy of Particle & Laser physicists

The European XFEL

LUXE

XFEL

https://arxiv.org/abs/1909.00860
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Dipole magnetLaser pulse

Compton γ’s

e−

27×1.5 cm2

e+

e+ pixel tracker
e+ calorimeter

γ forward system

{

x

y

z

e-laser setup 
(Not in scale)

e− Cherenkov counters

Electron beam 
(to dump)

Electron beam from XFEL

IP

θ = 17
0

e− Absorber

Electron beam from XFEL

IP

Laser pulse

γ-converter (35 µm Tungsten foil)

Photon beam 
(Bremsstrahlung)

e−
27×1.5 cm227×1.5 cm2

e+

e+e− pixel tracker
e+e− calorimeter

γ forward system

{
γB-laser setup 
(Not in scale)

θ = 17
0

x

y

z

γB monitors

Dipole magnet 1

Dipole magnet 2

Experimental setup
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1 2

Γe+e−

e+ e−e+ e−

Measure:

~5 mm

~37 cm

~12 mm

~55 cm

𝓞(102)𝓞(109)
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๏ We will measure the rates,  and  

๏ Characterised by 2 dimensionless parameters: 
๏ Laser intensity parameter:  

๏ Quantum parameter:  

๏ E144 (  only) has achieved 

Γe+e− ΓγC

ξ ∝ ϵ/ϵS

χe,γ ∝ (Ee,γ /me)(ϵ/ϵS)

e− + γL ϵ < ϵS /4

Reaching  in the  rest frameϵS e+e−

9

�e = 1.5

�e = 1
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Ee=17.5 GeV, e- bunch = 6*109,
X

X0
= 0.01, Laser shot= 50 fsγB + γL : Γe+e− ⟶ χe−3/(8χ)

non-perturbative 
range at ξ ≳ 1

perturbative 

range at ξ ≪ 1

๏ solid: numeric 
๏ dash: analytic 

asymptotic

e− + γL : ΓγC
(Compton edges)

The “kinematic edges” of the scattered electron 
depend on the number of absorbed laser photons

E144 Γe+e−

๏ Phys.Rev. D, Vol 60, 092004 
๏ Observed the strong rise as 

 ⟶ still perturbative 
๏ Well described by theory 
๏ Laser’s peak E-field was 

~0.5×1018 V/m

ξ2n
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ALPs:   
๏ mass:  
๏ Photon coupling:  
๏ Electron coupling:  

๏ The ALPs can also be produced at the IP 
๏ Similar for scalars:  

ℒint = 1
4Λ aFμνF̃μν + gaeaēγ5a

ma
1/Λ

gae

a → ϕ, F̃ → F and γ5 → 1

LUXE 
[TBC]

New-Physics with LUXE
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Plot done with: 
 

 
 

 
 
 

 
 

Tungsten target: 
X/X0=1% (35µm)

Ee = 17.5 GeV
Ne = 6 × 109

tL = 35 fs
ξ = 2.0
top = 107 s
RL = 1 Hz
LS = 1 m
Lmax ∼ 10 m
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N N

target
e−

γL
 a

γC
shielding de

te
ct

or

LS

Lmax

γ
γ

IP

Nγ = 1.5 × 1011

⟨Eγ⟩ = 2.2 GeV

ALPs production at the targetNon-perturbative γC prod. at the IP

γC

γB

Solid LS : Lmax = 1 : 30 m
Dashed LS : Lmax = 0.5 : 10 m
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๏ Phase-I: the JETi40 40 TW laser already loaned to 
LUXE by Helmholtz Institute Jena 

๏ Phase-II: looking up towards a 350 TW laser with as 
small as 3×3 µm2 spot size 

๏ Challenge: exact knowledge of the intensity at the IP 
๏ with the laser being ~10s of meters away from it 
๏ and with a remote diagnostics system

11

Electron acceleration at the JETI40 laser

Laser

Chirped Pulse Amplification principle

IP

Laser 
room

https://www.hi-jena.de/en/helmholtz_institute_jena/about-the-helmholtz-institute-jena/experimental_facilities/local/jeti40-laser/
https://www.hi-jena.de/en/helmholtz_institute_jena/about-the-helmholtz-institute-jena/experimental_facilities/local/jeti40-laser/
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๏ Measure laser parameters to infer the intensity, I 
๏ can be indirect and direct, relative and absolute 

๏ Small fluctuations in I lead to large rate fluctuations 
๏ air movement, vibrations, temp-drift, 

pump discharge variations, etc. 

๏ Either increase the stability by a better design or 
come up with precision diagnostics per shot

Laser diagnostics

12

Diagnostic system 
• relative intensity 
• pulse duration 
• beam size

10s of meters in vacuum

I =
E
Aτ

pulse energy

pulse spot size 
× pulse duration
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IP detector technologies

13

Tracker: based on ALICE ITS’s 
ALPIDE staves

Calorimeter: ~20 Layers of W-Si, 
inspired by the ILC's LumiCal (FCAL). 
Investigating also CALICE and CMS HGCAL

Tracker

CalorimeterCherenkov

Dipole

Vacuum chamber

From IP

Motorised stages

Cherenkov: prototype from ILC polarimetry 
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IP detectors performance (prelim.)

14
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Tracker : σx vs x

Tracker : σE /E ≲ 1 %
Tracker : ϵ(Etru) ∼ 99 %

  
for 0.5×0.5 cm2 

pads

Calo : ϵ(Etru)

σ̄x ∼ 20 μm

 
for 20 channels of 

1×1 cm2

Cherenkov : σE /E

๏ Count number of ,  and reconstruct the energy spectra 
๏ Combined operation of the tracker+calo: better redundancy

e+ e−

σE /E ≲ 12 %

  
for 20 sensors. 

Can expect 

Calo : σE /E

σE /E ≲ 18 % Pa
rti
cl
es

dE
/E
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Fwd photons system (  & )γB γC

15

Nonlinear (converted) Compton photons

data hist
bkg hist

sim.1 fit
sim.2 fit

LUXE E144

LUXE, Simulation

E144

https://www.nature.com/articles/s41598-020-66832-x https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.092004

Phys.Rev. D, Vol 60, 092004

https://www.nature.com/articles/s41598-020-66832-x
https://www.nature.com/articles/s41598-020-66832-x
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.092004
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.092004
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Synchronisation & Trigger

16

Synchronisation of the XFEL: 
๏ Optical clock (master laser oscillator, MLO) provides 

stable pulsed optical reference 
๏ Phase-locked to radio frequency (RF) oscillator (MO) 

๏ Optical reference distributed via length-stabilised 
optical fibre links for laser locking and RF re-sync 

LUXE’s laser oscillator: 
๏ connected to the optical sync system, which will in turn 

trigger the detectors

2.1 fs rms

12 fs RMS e- arrival time jitter 
6 fs RMS correlation width

Correlation of two independent 
bunch arrival time diagnostics 

(BAMs) at tunnel location 1932 m

world’s largest femtosecond-precision synchronisation system 
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๏ Approach & pass  (particle’s rest frame) in a clean env for the first time 
๏ Strong-field effects may enhance the potential to uncover new physics 
๏ Collaboration is open for contributions 
๏ Exciting times!

ϵS

Summary

17

Phase-0
Phase-I

Timeline  
๏ End of 2020: CDR 
๏ 2021-2023: Phase-0 installation 
๏ 2023-2024: Phase-0  run 
๏ 2025: Phase-0  run 
๏ 2026: Install 350 TW laser 
๏ 2027-2029: Phase-I experiment

e− + γL

γB + γL

Previous LUXE talks: 
https://luxe.desy.de/documents/talks/index_eng.html

https://luxe.desy.de/documents/talks/index_eng.html
https://luxe.desy.de/documents/talks/index_eng.html
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BACKUP
20
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Why strong field physics?

๏ Reaching  is equivalent e.g. to the measurement of the anomalous magnetic 
moment or the coupling constant (deviations could be a hint for new physics) 

๏ Non-perturbative QFT is still being actively developed 
๏ Can provide insight into the vacuum state / Higgs mechanism  
๏ Schwinger effect proposed as mechanism for reheating in the early universe 
๏ New physics opportunities with strong field? (ALPs, mCPs,…)

ϵS
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๏ Force of external static electric field is:                        
๏ Energy to separate the virtual pair in a distance d:       
๏ Energy required to materialise as a real pair:               
๏ Condition to materialise as a real pair in distance d:    
๏ Compton wavelength (typical scale):                           
๏ Probability for d: 

F = eϵ
E = F ⋅ d = eϵ ⋅ d
E = 2mec2

eϵd = 2mec2

λC = ℏ/(mec)

P ∝ exp (−
d
λC ) = exp (−2

m2
e c3

ℏeϵ ) = exp (−2
ϵS

ϵ )

The Schwinger effect

23

ϵ

ϵS =
m2

e c3

ℏe
≃ 1.3 ⋅ 1018 V

m
non-perturbative in e
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๏ The external field “closes” this energy gap 
๏ Electrons are lifted from the sea to leave the vacuum charged 
๏ The VEV of the EM current must no longer vanish 
๏ Separation into creation and destruction operators is problematic 
๏ This point is the limit of the validity of the Furry picture

The Furry Picture vacuum

24

The 2nd quantisation of the 
Dirac field relies on a gap 
between the positive and 
negative energy solutions
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The Furry Pictures

25

๏ If the external field is sufficiently strong: quantum interactions with it leave it essentially 
unchanged and it can be considered to be a classical background field 

๏ Separate the gauge field to external and quantum parts: 
  and shift  to the Dirac component: 

 

๏ The FP Lagrangian satisfies the Euler-Lagrange equation. 
๏ New equation of motion for the non-perturbative (bound) Dirac field (wrt ) and new 

solutions :  

๏ Exact solutions exist for a certain classes of external fields (plane waves, Coloumb fields 
and combinations) [Volkov Z Physik 94 250 (1935), Bagrov & Gitman 1990]: 

 with 

ℒInt = ψ̄(i∂ − m)ψ− 1
4 F2

μν − eψ̄(Aext + A)ψ Aext

ℒFP = ψ̄FP(i∂ − eAext−m)ψFP− 1
4 F2

μν − eψ̄FPAψFP

Aext
ψFP (i∂ − eAext−m)ψFP = 0

ψFP = Epe−ipxup Ep = Exp [− 1
2k ⋅ p (eAextk + i2e(Aext ⋅ p) − ie2A2

ext)]

IJMP A, Vol. 33,
No. 13 (2018)
1830011
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๏ Take circular/linear/elliptical polarised plane wave 
๏ can expand in Bessel functions 
๏ use the Locally Constant Field Approximation (LCFA) 

๏ can approximate with Airy functions 
๏ since field strength varies across pulse, choose correct 

polarisation, sample pulse in small voxels, take local 
amplitude of the pulse in each voxel  

๏ Discretise the interaction  
๏ transform to head-on collision  
๏ divide into overlapping slices  
๏ divide slices into mc voxels 
๏ calculate ξ and χ in each voxel 
๏ MC for each SQED process (rarest first) 

๏ Macro vs Micro 
๏ real particles enter/leave voxel  
๏ higher order processes tested in each voxel  
๏ distinguish between analytic rate within one voxel, and the 

effective global rate from sampling across whole bunch/pulse 
๏ final particle ensemble built up over successive voxel MC + 

time step through the whole collision (typically 5σ separation)

Charge bunch/laser interaction simulation

26
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๏ Weak fields: many accurate predictions of observables through ordinary 
perturbative expansion in the EM coupling (𝛼EM) 

๏ Strong fields: observables become inaccessible through ordinary 
perturbative expansion and there’s no experimental verification 

๏ For example: the spontaneous e+e- pair production (SPP) rate per unit 
volume in strong static E-field is:

Boiling point of QED

27

|E |

Phys. Rev. D 99, 036008 (2019)

But how to produce static E-field 
of the order of ~1.3×1018 V/m ???

ΓSPP

V
=

m4
e

(2π)3 ( |E |
Ec )

2 ∞

∑
n=1

1
n2

e−nπ Ec
|E | ∼ e− πm2e

e |E |

non-perturbative in 𝛼
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๏ Laser-assisted one photon pair production, OPPP (SPP ⟶OPPP) 
๏ the laser’s E-field frequency is , with momentum  
๏ the laser’s E-field strength is , with  
๏ The  pair picks up momentum from the laser photons 

๏ OPPP rate is a function of the laser intensity  and the photon recoil :

ω k = (ω, k)
|ϵ | I ∼ |ϵ |2

e+e−

ξ χ

Lasers strong field “how-to”

28

Initial photon : ki = (ωi, ki) ΓOPPP =
αm2

e

4ωi
F(ξ, χγ)

Laser intensity : ξ =
e |ϵ |
ωme

=
me

ω
|ϵ |
ϵS

Photon recoil : χγ =
k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|ϵ |
ϵS

{Dimensionless and 
Lorentz-invariant
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Understanding ξ

29

e−

The electron’s maximum velocity is: vmax = a ⋅ Δt =
eE
me

⋅
1
ω

Electron “at rest”

The electron will oscillate with frequency  and radiate in turn: ω eE = mea

Normalise to c:    (dimensionless & Lorentz-invariant)ξ ≡
vmax

c
=

eE
ωmec

 reaches unity for e.g. a  nm laser at an intensity of  W/cm2ξ λ = 800 I ∼ 1018

Infinite E-field plane 
wave with frequency ω
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Understanding χ

30

θ

cos(π − θ) = − cos θ

π-θ

ω

e/γ

Scattering geometry: k ⋅ ki = ωωi − |k | |ki |cos(π − θ) = ωωi (1 + cos θ)

χ =
k ⋅ ki

m2
e

ξ =
ωωi (1 + cos θ)

m2
e

eϵ
ωmec

= (1 + cos θ)
ωi

me

ϵ
ϵS

1
ϵS

=
e

m2
e

ℏ = c = 1

Recoil parameter: χ =
k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|E |
Ec
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OPPP rate: ΓOPPP ∝ F(ξ, χγ)

31

Jn are Bessel functionsSum on number of 
absorbed laser γ’s

threshold number 
of absorbed γ’s

Assumption1: the laser E-field is a circularly polarised infinite plane wave 
Assumption2: we can produce a mono-energetic photon beam with ~O(10 GeV)

As the laser intensity  increases 
๏ the threshold number of absorbed photons increases 
๏ more terms in the summation drop out of the probability

ξ
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๏ With increasing laser intensity : 
๏ higher order (n) contributions become more prominent 
๏ edge shifts to lower energies due to electron’s higher effective mass 

๏ Cannot go much beyond  to produce high energy photons

ξ

ξ ∼ 1

Compton edges

32
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edge shifts down with increasing ξ
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๏ Unlike SPP, the  pair (in its rest frame) experiences an E-field 
enhanced by the relativistic boost factor:  

๏ However, mono-energetic photon beams with energies in the 
 range are not available…

e+e−

|ϵ | → |ϵ | × ωi /me

ωi ∼ 𝒪(10 GeV)

 asymptoticallyΓOPPP

33

ΓOPPP ⟶
3
16

3
2

αme (1 + cos θ)
|ϵ |
ϵS

exp (−
8
3

1
1 + cos θ

me

ωi

ϵS

|ϵ | )

 pair is boosted and 
the E-field is enhanced

e+e−

Can measure  from ϵS ΓOPPP

ωi ∼ 𝒪(10 GeV)
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๏ solid lines: numerical solutions 
๏ dashed lines: analytical asymptotic solutions

OPPP rate: ΓOPPP ∝ F(ξ, χγ)

34
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๏ An  electron beam can be sent onto a high-Z target 
๏ Converted into a collimated high-energy γ-beam (Bremsstrahlung) 
๏ These photons are crossed with the high-intensity laser beam 
๏ Laser-assisted bremsstrahlung photon pair production (BPPP)

∼ 𝒪(10 GeV)

High-energy photons?

35

� Spectrometer

High energy

electrons

Bremsstrahlung converter

High energy photon

High intensity laser beam

e+/e� Deflection system

e+/e� Spectrometer

Ee

 is the energy of the incident electronsEe

ΓBPPP =
αm2

e

4 ∫
Ee

0

dωi

ωi

dNγ

dωi
Fγ(ξ, χγ(ωi))

Recall : ΓOPPP =
αm2

e

4ωi
F(ξ, χγ(ωi))

⏟Bremsstrahlung “PDF”
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๏ For a target of thickness , where  is the radiation length: 

 

๏ Similarly to OPPP, replacing  with , the BPPP rate is: 

 

๏ Hence, the Schwinger critical field can be determined from 

X ≪ X0 X0

ωi
dNγ

dωi
≈

4
3

−
4
3 ( ωi

Ee ) + ( ωi

Ee )
2

X
X0

χγ χe

ΓBPPP ⟶
αm2

e

Ee

9
128

3
2

X
X0

χ2
e e− 8

3χe (1 − 1
15ξ2 )

ΓBPPP

Asymptotically

36
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= 0.01, Laser shot= 50 fs

ΓBPPP per bunch per shot vs :ξ



Noam Tal Hod, WIS July 30 2020

๏ 46.6 GeV electron beam 
๏ 5×109 electrons per bunch 
๏ Bunch rates up to 30 Hz 
๏ Terawatt laser pulses 
๏ Intensity of ~0.5×1018 W/cm2 
๏ Frequency of 0.5 Hz for 

wavelengths 1053 nm, 527 nm 
๏ electrons-laser crossing angle: 17º

History: E144 @ SLAC

37

E144 at SLAC 
during the 90s

OPPP only!
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History: E144 @ SLAC

1/χγ =

1/14 ≤ χγ ≤ 1/6

ξ =

0.2 ≤ ξ ≤ 0.4

Phys.Rev. D60 (1999) 092004

OPPP only!
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๏ Measured non-linear Compton 
scattering with  photons absorbed 
and pair production (with ) 

๏ Observed the strong rise  but not 
asymptotic limit (still perturbative) 

๏ Measurement well described by theory 

๏ Large uncertainty on the laser intensity 

๏ Did not achieve the critical field - the 
peak E-field of the laser: 0.5×1018 V/m

n = 4
n = 5

∼ ξ2n
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History: E144 @ SLAC
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๏ Electron motion in a circularly polarised field, , with frequency : 
๏ Force:  
๏ Velocity:  
๏ Momentum:  
๏ Energy:  
๏ Mass shift: 

 
๏ The 4-momentum of the electron inside an EM wave is altered due to 

continuous absorption and emission of photons 
๏ the ︎laser ︎ photon 4-momentum is:  
๏ outside the field, the (free) charged particle 4-momentum is: ︎  
๏ inside the field, the effective 4-momentum ︎ ( ) ︎ and mass are: 

 

ϵL ωL
F⊥ = eϵL = mea = mev2/R ⟹ R = mev2/eϵL

v = ωLR = ωLmev2/eϵL ⟹ v = eϵL /ωLme = ξ
p⊥ = mev = meξ

E = m2
e + ⃗p 2 = m2

e + p2
⊥ + p2

∥ = m2
e (1 + ξ2) + p2

∥ = m̄2
e + p2

∥

me ⟶ m̄e = me 1 + ξ2

kμ
pμ

qμ

qμ = pμ +
ξ2m2

e

2(k ⋅ p)
kμ ⇒ m̄e = qμqμ = me 1 + ξ2

Mass shift

40
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๏ if  is the number of absorbed laser photons in the nonlinear Compton 
process, the energy-momentum conservation:  

๏ The maximum value for the scattered photon energy, ︎, corresponds to the 
minimum energy, or, “kinematic edge” of the scattered electron. it depends on 
the number of absorbed laser photons: 

, where  

๏ This energy decreases with increasing number of photons absorbed 

๏ The electron is effectively getting more massive with  and recoils less 
๏ the min energy of the scattered electron (kinematic edge) is higher

n
qμ + nkμ = q′ μ + k′ μ

ω′ 

ω′ min =
ω

1 + 2n(k ⋅ p)/m̄2
e

m̄e = me 1 + ξ2

ξ

Mass shift ⟶ kinematic edge
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Electric field vs Intensity

42

I = (1 − fLosses) ×
Epulse

Tpulse × Spulse
→

(1 − 60%) × 9 [J]
30 [fs] × (3 × 3 [μm2])

I = 0.4/30 [J/fs/μm2] ∼ 1.33 × 10−2 × 1015 × 108 [J/s/cm2]

I = 1.33 × 1021 [J/s/cm2] = 1.33 × 1021 [W/cm2]

E =
I

cnϵ0
⟶⏟
n=1

∼
1.33 × 1021

(2.99 × 108) × (8.85 × 10−12)
(N ⋅ m/s)/cm2

(m/s) × (N/V2)

Boost : E ⟶ E × (3.4 × 104)

ESchwinger ∼ 1.3 × 1016 [V/cm]

ϵ0 = 8.85 × 10−12[N/V2]
c = 2.99 × 108[m/s]

[I] = [W] = [N ⋅ m/s]

E ∼ 0.71 × 1012 [V/cm]

ELUXE ∼ 2.4 × 1016 [V/cm]
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๏ U-shaped aluminium channels, filled with gas, mirrors to guide light  
๏ Several channels (prototype has 2), separated by thin wall 
๏ LED on one leg for calibration, PMT on other leg for light detection 

Cherenkov Prototype

43
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๏ Sensors parameters: 
๏ Layer gap: 0.2mm  
๏ Silicon: 0.32mm 
๏ Carbon: 0.1mm 
๏ Aluminium: 0.02mm 
๏ Tungsten: 3.5mm 
๏ Density: 19.3g/cm3 
๏ Fanout: 0.15mm (with epoxy) 

๏ Region covered 
๏ x: 100 mm to 650 mm 
๏ y: -27.5 mm to 27.5 mm

Calorimeter prototype

44

๏ We expect high multiplicity of tracks in the low-x range 
๏ Highly overlapping showers can not be separated easily 

๏ Can use analytical solution to calculate what energy do we expect in (x,y,z) 
๏ “Particle density” in the cell is  
๏ Number of total particles is  where the sum goes over all cells

Ncell = Ecell /Eexpected
Ntot = ΣNcell
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Number of ALPs
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Na =
ρTΔx
ATm0 ∫ dEγ

dNγ

dEγ ∫ dpa
dσa

dpa (e− ΓaLS
pa /ma − e− ΓaLmax

pa /ma ) ≈
ρTΔx
ATm0 ∫ dEγ

dNγ

dEγ
σa (e− ΓaLS

pa /ma − e− ΓaLmax
pa /ma )

Ea ≈ Eγ

300

30
3

0.3

1 m

0.1 m

30 m

10 m

brem 3

Ee = 17.5 GeV Ne = 6 × 109 tL = 35 fs ξ = 2.0 top = 107 s RL = 1 Hz

 LS = 1 m
Lmax = 30 m

 for   βγcτ ⟨Eγ⟩ = 2.2 GeV
๏ with Comptons 
๏ with Bremsstrahlung

best 
case

Expected  events at LUXE for given Na {ma, Λ}
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Experimental area
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