Study of the normalized p_T^W Distribution in $p\bar{p}$ Collisions at D0 Chen Wang University of Science and Technology of China On Behalf of the D0 Collaboration ICHEP 2020 July. 28th, Prague #### Motivation $\triangleright p_T^V$ is described by QCD calculation - \triangleright Leading Order (LO): $p_T^V = 0$ - \triangleright Including higher order: p_T^V arise from the initial state parton emission - > Test QCD predictions - ightharpoonup In $p\bar{p}$ collisions, the production dominated by valence quark - ➤ In the LHC experiments, it involves sea quarks - \triangleright Low $p_T(V)$ region dominated by multiple soft gluon emissions - ➤ QCD predictions from a soft-gluon resummation formalism (CSS¹) - \triangleright Using a form factor with 3 non-perturbative parameters, g_1 , g_2 and $g_3(BLNY^2)$ - \triangleright g_1 , g_2 and g_3 fixed to previous measurement² - ➤ Constrain models of non-perturbative approaches - \triangleright Benefit other related electroweak parameter measurements such as m_W - > Introduction - \triangleright First Tevatron Run II p_T^W study - First p_T^W study at $\sqrt{s} = 1.96 \text{ TeV}$ - \triangleright Based on the latest D0 published m_W measurement - ➤ Same data sample, 4.35 fb⁻¹ Run II Data - > Same background estimation strategy - > Same detector calibration methodologies - ➤ Same parametrized MC simulation (PMCS) - Focus on low p_T^W region (<15 GeV) - ➤ Sensitive to QCD non-perturbative parameters - > Provide reconstruction level results - ➤ A fast folding procedure for comparisons to other models #### > D0 Detector - Central tracking system - Silicon Microstrip Tracker (SMT) - Scintillating Central Fiber Tracker (CFT) - ➤ 1.9 T Solenoid - **Calorimeter** - ► Liquid argon and uranium $|\eta|$ < 4.2 - ➤ Electron energy measurement - Hadronic recoil reconstruction #### > Samples and selections - ightharpoonup Data: Run II, 4.35 fb⁻¹, $\sqrt{s} = 1.96 \text{ TeV}$ - > Trigger requirement: - ➤ At least one electromagnetic (EM) cluster - > Transverse energy threshold: 25~27 GeV depending on instant luminosity - > Offline selections: - > Electron candidate: $$p_T^e > 25 \text{ GeV}, |\eta^e| < 1.05$$ Pass shower shape and isolation requirements > W candidate: At least one electron candidate $$50 < m_T < 200 \text{ GeV}, p_T^{Missing} > 25 \text{ GeV}, u_T < 15 \text{ GeV}$$ - ightharpoonup Hadronic Recoil $\vec{u}_T = \sum \vec{E}_T^{calo}$, represents p_T^W - ➤ The vector sum of reconstructed energy clusters in the calorimeters excluding deposits from the lepton $$ightharpoonup \vec{E}_T^{Missing} = -(\vec{u}_T + \vec{p}_T^e)$$, represents p_T^v $$m_T = \sqrt{2p_T^e p_T^v (1 - \cos\Delta\phi)}$$ - Detector Calibration - Electron energy calibrated using Z mass - \triangleright Two parameters: $E_{corr} = \alpha E_{obs} + \beta$ - ➤ Hadronic Recoil calibrated with Z candidates - $\triangleright \hat{\eta}$: the direction bisecting the two electrons - \succ Tuned by the imbalance in $\hat{\eta}$ direction, η_{imb} $$\eta_{imb} = (\vec{u}_T + \vec{p}_T^{ee}) \cdot \hat{\eta}$$ 6 - ➤ In W candidates, only one charged lepton reconstructed - $\triangleright u_{\parallel}$ and u_{\perp} : the parallel and perpendicular components to the electron direction - > Tests the modeling of the hadronic recoil - ➤ Good agreement between data and prediction on hadronic recoil response #### ➤ Background Estimation - \blacktriangleright Three backgrounds: W $\rightarrow \tau v \rightarrow e v v v$, Z $\rightarrow e e$, Multi-Jet - \triangleright W $\rightarrow \tau v \rightarrow evvv$: Estimated from MC simulation (PMCS) - $\gt Z \rightarrow ee$: one electron escapes detection - ➤ Multi-Jet: one jet misidentified as one electron Estimated from data | Background | W o au v | Z ightarrow ee | MJ | |------------|-----------------------|---------------------|-----------------| | Fraction | $1.668\% \pm 0.004\%$ | $1.08\% \pm 0.02\%$ | 1.018% + 0.065% | ➤ Background less than 4%, uncertainty due to the background estimation is negligible ➤ Good agreement between data and prediction at the reconstruction level | u_T bin | 0–2 GeV | 2–5 GeV | 5–8 GeV | 8–11 GeV | 11-15 GeV | |-------------------------------------|---------|---------|---------|----------|------------| | Fraction of events in the u_T bin | 0.1181 | 0.3603 | 0.2738 | 0.1515 | 0.0963 | | Total uncertainty | 0.0003 | 0.0005 | 0.0005 | 0.0004 | 0.0003 | 2020/7/28 ICHEP 2020 7 #### > PMCS Reweighting - $\triangleright p_T^W y^W$ 2D distribution reweighted to other theory predictions - ➤ The default PMCS: ResBos+BLNY - Resummation: other non-perturbative functional form (TMD-BLNY) - ➤ Parton shower: different Pythia8 tunes from other collaborations - > Systematic uncertainty estimated by changing parameters in PMCS - > Separately estimated with each model - > Dominated by the uncertainty due to the hadronic recoil calibration - ➤ Bin-by-bin correlation estimated - > Fraction of events of the background-subtracted data compared to different predictions - $\geq \chi^2$ calculation - \triangleright The χ^2 value between the data and the reweighted PMCS are calculated - \triangleright All 5 u_T bins considered, n.d.f. equals to 4 due to the normalization - ➤ The bin-by-bin correlations are taken into account - > The uncertainties due to the resummation and the tune are ignored - ➤ The PDF uncertainty is negligible #### **Conclusion** - ➤ 2 models excluded: Pythia8+ATLAS MB A2Tune+CTEQ6L1 Pythia8+CMS UE Tune CUETP8S1-CTEQ6L1+CTEQ6L1 - Other Pythia8 tunes except the default one are disfavored - ➤ ResBos+BLNY and the default Pythia8 agree with the data very well | Generator/Model | χ^2/ndf | <i>p</i> -value | Signif. | |---|-----------------------|------------------------|---------| | RESBOS (Version CP 020811)+BLNY+CTEQ6.6 | 0.49 | 7.41×10^{-1} | 0.33 | | RESBOS (Version CP 112216)+TMD-BLNY+CT14HERA2NNLO | 3.13 | 1.39×10^{-2} | 2.46 | | PYTHIA 8+CT14HERA2NNLO | 0.32 | 8.63×10^{-1} | 0.17 | | PYTHIA 8+ATLAS MB A2Tune+CTEQ6L1 | 12.25 | 5.84×10^{-10} | 6.19 | | PYTHIA 8+ATLAS MB A2Tune+MSTW2008LO | 6.17 | 5.83×10^{-5} | 4.02 | | PYTHIA 8+ATLAS AZTune+CT14HERA2NNLO | 6.61 | 2.60×10^{-5} | 4.21 | | PYTHIA 8+Tune2C+CTEQ6L1 | 7.66 | 3.61×10^{-6} | 4.63 | | PYTHIA 8+Tune2M+MRSTLO | 7.32 | 6.89×10^{-6} | 4.50 | | PYTHIA 8+CMS UE Tune CUETP8S1-CTEQ6L1+CTEQ6L1 | 8.80 | 4.23×10^{-7} | 5.06 | - > Compare to other theory predictions - > Two approach to achieve this - > Provide an unfolded particle level result - > Provide a folding procedure - ➤ When the statistical uncertainty dominates - \triangleright It can be proven that χ^2_{reco} is equal to χ^2_{unfold} - > Same precision between the particle level and the reconstruction level comparisons - ➤ When the systematic uncertainty dominates - Linear extrapolation to the reconstruction level, non-linear to the particle level - ➤ Additional uncertainty on the particle level due to regularization procedure - ➤ The precision of the particle level comparison would be reduced - > The reduction of the precision would be - > Greater when the resolution of the distribution is worse - > Smaller when the bin width is enlarged - > This is why we chose to provide in our paper a folding procedure - ➤ Better precision than the unfolded results # > Folding procedure \triangleright The folded number of events in u_T bin i # Response Matrix R_{ii} X_i : the number of events in the $i^{th} p_T^W$ bin \mathcal{E}_i : the efficiency correction in the $i^{th} p_T^W$ bin 5 < u_T < 8 F_i : the fiducial correction in the i^{th} u_T bin N_i^{corr} : the number of events in the i^{th} u_T bin $^{2 < u_T < 5}$ \triangleright Response Matrix R_{ij} : The probability for the events in one p_T^W bin to be reconstructed into different u_T bins The instruction to calculate the covariance matrix and details of the whole folding procedure are introduced in the appendix of the paper (arXiv:2007.13504) https://www-d0.fnal.gov/Run2Physics/WWW/results/final/EW/E20A/ # > Summary - First Tevatron Run II $p_T(W)$ measurement at $\sqrt{s} = 1.96$ TeV - \triangleright Focus on low $p_T(W)$ region - ➤ The background subtracted data is compared to different predictions after PMCS simulation on the reconstruction level - > Uncertainty dominated by that due to the hadronic recoil calibration - ➤ Model uncertainty ignored - > PDF uncertainty negligible - > Two models are excluded - ➤ Pythia8+ATLAS MB A2Tune+CTEQ6L1 - ➤ Pythia8+CMS UE Tune CUETP8S1-CTEQ6L1+CTEQ6L1 - ➤ A folding procedure is provided for the comparison with other models - > Better precision than the unfolded results - ➤ Model dependence tested to be negligible - $\triangleright \chi^2$ difference smaller than the impact from the data fluctuation #### Link to the paper: https://www-d0.fnal.gov/Run2Physics/WWW/results/final/EW/E20A/ https://arxiv.org/abs/2007.13504 # **Backup** ➤ Collins-Soper-Sterman (CSS) resummation formalism Production of a vector boson in the collision of two hadrons $$\frac{d\sigma(h_1h_2 \to VX)}{dQ^2dQ_T^2dy} = \frac{1}{(2\pi)^2}\delta(Q^2 - M_V^2) \int d^2b \ e^{i\vec{Q}_T \cdot \vec{b}} \widetilde{W}_{j\bar{k}}(b, Q, x_1, x_2) + Y(Q_T, Q, x_1, x_2)$$ b: impact parameter \triangleright the nonperturbative terms in the form of an additional factor $\widetilde{W}_{j\bar{k}}^{NP}(b,Q,x_1,x_2)$ $$\widetilde{W}_{j\bar{k}} = \widetilde{W}_{j\bar{k}}^{pert} \widetilde{W}_{j\bar{k}}^{NP}$$ Brock-Landry-Nadolsky-Yuan form $$\widetilde{W}_{j\bar{k}}^{NP}(b,Q,x_1,x_2) = \exp\left(-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right) - g_1 g_3 \ln(100x_1x_2)\right) b^2$$ CSS: Nucl. Phys. B250, 199 (1985) BLNY: Phys. Rev. D 67, 073016 (2003) # ➤ Response Matrix *R* \triangleright The probability for the events in one p_T^W bin to be reconstructed into different u_T bins $$R_{ij} = P(\mathcal{N}_i | \mathcal{X}_j)$$ \mathcal{N}_i : the case that u_T is in the i^{th} bin \mathcal{X}_i : the case that p_T^W is in the i^{th} bin N_i : the number of events in the i^{th} u_T bin X_i : the number of events in the i^{th} p_T^W bin $$N_i = \sum_j R_{ij} X_j$$ - \triangleright Purity R_{ii} : - The probability for the events in one $p_T(W)$ bin to be reconstructed into the same u_T bin Low purity caused by limited resolution Maximum Purity: $max(R_{ii}) \sim 45\%$ Minimum Purity: $min(R_{ii}) \sim 16\%$ 2020/7/28 - Comparison to other theory models - ➤ Provide an unfolded particle-level result - > Directly compare to the theory prediction on the particle level - ➤ A common procedure widely used by other collaboration - > Provide a folding procedure - ➤ Account for the detector response and resolution effects - ➤ Compare to the background-subtracted data on the reconstruction level - > For these two approaches, - > Fiducial selection should be defined $$p_T^e > 25 \text{ GeV}, |\eta^e| < 1.05$$ $p_T^v > 25 \text{ GeV}, 50 < m_T < 200 \text{ GeV}$ - > Basic inputs are the same - ➤ Basic inputs estimated from MC simulations - \triangleright Fiducial Correction: u_T distribution within fiducial volume - Response Matrix: correct detector effects and migration - ➤ Efficiency Correction - > Statistical uncertainty dominated situation - \triangleright The χ^2 calculated on the reconstruction level: $$\chi_{reco}^{2} = \left(N^{Data} - N^{Pred}\right)^{T} \Sigma^{-1} (N^{Data} - N^{Pred})$$ - \triangleright Σ is the bin-by-bin covariance matrix of the statistical uncertainty on the reconstruction level, which should be a diagonal matrix - \triangleright If the data and the prediction is rotated by a matrix M, which is the unfolding matrix $$\chi_{unfold}^{2} = (MN^{Data} - MN^{Pred})^{T} \Sigma'^{-1} (MN^{Data} - MN^{Pred})$$ $\triangleright \Sigma'$ is the bin-by-bin covariance matrix of the statistical uncertainty on the particle level $$\Sigma' = M\Sigma M^T$$ $$\begin{split} \chi_{unfold}^2 &= \left(MN^{Data} - MN^{Pred}\right)^T \Sigma'^{-1} (MN^{Data} - MN^{Pred}) \\ &= \left(N^{Data} - N^{Pred}\right)^T M^T M^{T^{-1}} \Sigma^{-1} M^{-1} M \left(N^{Data} - N^{Pred}\right) \\ &= \left(N^{Data} - N^{Pred}\right)^T \Sigma^{-1} \left(N^{Data} - N^{Pred}\right) \\ &= \chi_{reco}^2 \end{split}$$ > Same precision between the particle level and the reconstruction level comparisons - > Systematic uncertainty dominated situation - \triangleright A simple unfolding procedure is to use R^{-1} as the unfolding matrix, M - \triangleright The response matrix of the systematic variation, $R' = R + \Delta R$ - ➤ The uncertainty on the reconstruction level, a linear transformation $$U_{reco} = R'X^{Pred} - RX^{Pred} = \Delta RX^{Pred}$$ ➤ The uncertainty on the unfolding particle level, a non-linear transformation due to the inversion of the covariance matrix $$U_{unfold} = R'^{-1}N^{Data} - R^{-1}N^{Data} = (R'^{-1} - R^{-1})N^{Data}$$ - ➤ The precision of the particle level comparison would be reduced - > Unfolding method with a regularization scheme - ➤ No longer an unbiased estimation - > The reduction due to the non-linear transformation would be smaller - ➤ A model input or a regularization model required - ➤ Additional uncertainty due to the input model or the regularization - ➤ The reduction of the precision: - > Greater when the purity is lower - > Smaller when the bin width is enlarged # > Folding procedure - > We choose to provide a folding procedure instead of an unfolded result, because - ➤ Better precision on the reconstruction level than the particle level - ➤ Not affected by the low purity problem - > The rise and hence the shape of the spectrum can be resolved - ➤ Avoid arbitrary definitions of the addition unfolding uncertainties and correlations - \triangleright The fraction of events in u_T bin i, \mathcal{N}_i $$\mathcal{N}_i = \frac{N_i^{corr}}{\sum_{j=1}^5 N_j^{corr}}, \quad N_i^{corr} = \frac{\sum_{j=1}^6 R_{ij} \mathcal{E}_j X_j}{F_i}$$ X_i : the number of events in the $i^{th} p_T^W$ bin \mathcal{E}_i : the efficiency correction factor in the i^{th} p_T^W bin F_i : the fiducial correction in the i^{th} u_T bin N_i^{corr} : the number of events after all the correction in the i^{th} u_T bin $\triangleright \mathcal{N}_i$ is the folded result - > The systematic uncertainty and its estimation - ➤ In total, 11 systematic variations provided - First 10 variations for the uncertainty due to the hadronic recoil calibration - > 5 positive change variations + 5 negative change variations - Last variation for the uncertainty due to the electron energy and efficiency - \triangleright The covariance matrix of the systematic uncertainty, $\Sigma^{(Syst.)}$ - > Different variations uncorrelated from each other - Each variation, correlated bin-by-bin - > The positive change variations and negative change variations are averaged $$\Sigma^{(Syst.)} = \frac{\sum_{k=1}^{10} \Sigma^{(k)}}{2} + \Sigma^{(11)}$$ $\triangleright \Sigma^{(k)}$ is the covariance matrix of the k^{th} variation, its element $\Sigma_{ij}^{(k)}$ $$\Sigma_{ij}^{(k)} = (\mathcal{N}_i^{(k)} - \mathcal{N}_i) \times (\mathcal{N}_j^{(k)} - \mathcal{N}_j)$$ \triangleright The covariance matrix used in the χ^2 calculation, Σ $$\Sigma = \Sigma^{(Data.\,Stat.)} + \Sigma^{(MC.\,Stat.)} + \Sigma^{(Syst.)}$$ - > The model dependence - > The folding inputs - \triangleright The efficiency correction, \mathcal{E}_i , derived with p_T^W dependence, Model independent - \triangleright The response matrix, R_{ij} , derived with $u_T p_T^W$ dependence, Model independent - \triangleright The fiducial correction, F_i , derived with u_T dependence, Model dependent - \triangleright Check by changing the peak and the width of p_T^W distribution by 20% - > The impact is negligible compared to the total uncertainty of the folded result - ➤ The systematic uncertainty and its correlation - > Estimated by systematic variations $$U_{reco} = R'X^{Pred} - RX^{Pred} = \Delta RX^{Pred}$$ - > The uncertainty and the covariance matrix should be model dependent - ➤ The basic inputs from all the variations are provided 21