

Study of the normalized p_T^W Distribution in $p\bar{p}$ Collisions at D0

Chen Wang

University of Science and Technology of China On Behalf of the D0 Collaboration

ICHEP 2020 July. 28th, Prague

Motivation

 $\triangleright p_T^V$ is described by QCD calculation

- \triangleright Leading Order (LO): $p_T^V = 0$
- \triangleright Including higher order: p_T^V arise from the initial state parton emission
- > Test QCD predictions
- ightharpoonup In $p\bar{p}$ collisions, the production dominated by valence quark
 - ➤ In the LHC experiments, it involves sea quarks
- \triangleright Low $p_T(V)$ region dominated by multiple soft gluon emissions
 - ➤ QCD predictions from a soft-gluon resummation formalism (CSS¹)
 - \triangleright Using a form factor with 3 non-perturbative parameters, g_1 , g_2 and $g_3(BLNY^2)$
 - \triangleright g_1 , g_2 and g_3 fixed to previous measurement²
 - ➤ Constrain models of non-perturbative approaches
 - \triangleright Benefit other related electroweak parameter measurements such as m_W

- > Introduction
 - \triangleright First Tevatron Run II p_T^W study
 - First p_T^W study at $\sqrt{s} = 1.96 \text{ TeV}$
 - \triangleright Based on the latest D0 published m_W measurement
 - ➤ Same data sample, 4.35 fb⁻¹ Run II Data
 - > Same background estimation strategy
 - > Same detector calibration methodologies
 - ➤ Same parametrized MC simulation (PMCS)
 - Focus on low p_T^W region (<15 GeV)
 - ➤ Sensitive to QCD non-perturbative parameters
 - > Provide reconstruction level results
 - ➤ A fast folding procedure for comparisons to other models

> D0 Detector

- Central tracking system
- Silicon Microstrip Tracker (SMT)
- Scintillating Central Fiber Tracker (CFT)
- ➤ 1.9 T Solenoid
- **Calorimeter**
- ► Liquid argon and uranium $|\eta|$ < 4.2
- ➤ Electron energy measurement
- Hadronic recoil reconstruction

> Samples and selections

- ightharpoonup Data: Run II, 4.35 fb⁻¹, $\sqrt{s} = 1.96 \text{ TeV}$
- > Trigger requirement:
 - ➤ At least one electromagnetic (EM) cluster
 - > Transverse energy threshold: 25~27 GeV depending on instant luminosity
- > Offline selections:
 - > Electron candidate:

$$p_T^e > 25 \text{ GeV}, |\eta^e| < 1.05$$

Pass shower shape and isolation requirements

> W candidate:

At least one electron candidate

$$50 < m_T < 200 \text{ GeV}, p_T^{Missing} > 25 \text{ GeV}, u_T < 15 \text{ GeV}$$

- ightharpoonup Hadronic Recoil $\vec{u}_T = \sum \vec{E}_T^{calo}$, represents p_T^W
 - ➤ The vector sum of reconstructed energy clusters in the calorimeters excluding deposits from the lepton

$$ightharpoonup \vec{E}_T^{Missing} = -(\vec{u}_T + \vec{p}_T^e)$$
, represents p_T^v

$$m_T = \sqrt{2p_T^e p_T^v (1 - \cos\Delta\phi)}$$

- Detector Calibration
 - Electron energy calibrated using Z mass
 - \triangleright Two parameters: $E_{corr} = \alpha E_{obs} + \beta$
 - ➤ Hadronic Recoil calibrated with Z candidates
 - $\triangleright \hat{\eta}$: the direction bisecting the two electrons
 - \succ Tuned by the imbalance in $\hat{\eta}$ direction, η_{imb}

$$\eta_{imb} = (\vec{u}_T + \vec{p}_T^{ee}) \cdot \hat{\eta}$$

6

- ➤ In W candidates, only one charged lepton reconstructed
 - $\triangleright u_{\parallel}$ and u_{\perp} : the parallel and perpendicular components to the electron direction
 - > Tests the modeling of the hadronic recoil
- ➤ Good agreement between data and prediction on hadronic recoil response

➤ Background Estimation

- \blacktriangleright Three backgrounds: W $\rightarrow \tau v \rightarrow e v v v$, Z $\rightarrow e e$, Multi-Jet
 - \triangleright W $\rightarrow \tau v \rightarrow evvv$: Estimated from MC simulation (PMCS)
 - $\gt Z \rightarrow ee$: one electron escapes detection
 - ➤ Multi-Jet: one jet misidentified as one electron

Estimated from data

Background	W o au v	Z ightarrow ee	MJ
Fraction	$1.668\% \pm 0.004\%$	$1.08\% \pm 0.02\%$	1.018% + 0.065%

➤ Background less than 4%, uncertainty due to the background estimation is negligible

➤ Good agreement between data and prediction at the reconstruction level

u_T bin	0–2 GeV	2–5 GeV	5–8 GeV	8–11 GeV	11-15 GeV
Fraction of events in the u_T bin	0.1181	0.3603	0.2738	0.1515	0.0963
Total uncertainty	0.0003	0.0005	0.0005	0.0004	0.0003

2020/7/28 ICHEP 2020 7

> PMCS Reweighting

- $\triangleright p_T^W y^W$ 2D distribution reweighted to other theory predictions
 - ➤ The default PMCS: ResBos+BLNY
 - Resummation: other non-perturbative functional form (TMD-BLNY)
 - ➤ Parton shower: different Pythia8 tunes from other collaborations
- > Systematic uncertainty estimated by changing parameters in PMCS
 - > Separately estimated with each model
 - > Dominated by the uncertainty due to the hadronic recoil calibration
 - ➤ Bin-by-bin correlation estimated
- > Fraction of events of the background-subtracted data compared to different predictions

- $\geq \chi^2$ calculation
 - \triangleright The χ^2 value between the data and the reweighted PMCS are calculated
 - \triangleright All 5 u_T bins considered, n.d.f. equals to 4 due to the normalization
 - ➤ The bin-by-bin correlations are taken into account
 - > The uncertainties due to the resummation and the tune are ignored
 - ➤ The PDF uncertainty is negligible

Conclusion

- ➤ 2 models excluded: Pythia8+ATLAS MB A2Tune+CTEQ6L1
 Pythia8+CMS UE Tune CUETP8S1-CTEQ6L1+CTEQ6L1
- Other Pythia8 tunes except the default one are disfavored
- ➤ ResBos+BLNY and the default Pythia8 agree with the data very well

Generator/Model	χ^2/ndf	<i>p</i> -value	Signif.
RESBOS (Version CP 020811)+BLNY+CTEQ6.6	0.49	7.41×10^{-1}	0.33
RESBOS (Version CP 112216)+TMD-BLNY+CT14HERA2NNLO	3.13	1.39×10^{-2}	2.46
PYTHIA 8+CT14HERA2NNLO	0.32	8.63×10^{-1}	0.17
PYTHIA 8+ATLAS MB A2Tune+CTEQ6L1	12.25	5.84×10^{-10}	6.19
PYTHIA 8+ATLAS MB A2Tune+MSTW2008LO	6.17	5.83×10^{-5}	4.02
PYTHIA 8+ATLAS AZTune+CT14HERA2NNLO	6.61	2.60×10^{-5}	4.21
PYTHIA 8+Tune2C+CTEQ6L1	7.66	3.61×10^{-6}	4.63
PYTHIA 8+Tune2M+MRSTLO	7.32	6.89×10^{-6}	4.50
PYTHIA 8+CMS UE Tune CUETP8S1-CTEQ6L1+CTEQ6L1	8.80	4.23×10^{-7}	5.06

- > Compare to other theory predictions
 - > Two approach to achieve this
 - > Provide an unfolded particle level result
 - > Provide a folding procedure
 - ➤ When the statistical uncertainty dominates
 - \triangleright It can be proven that χ^2_{reco} is equal to χ^2_{unfold}
 - > Same precision between the particle level and the reconstruction level comparisons
 - ➤ When the systematic uncertainty dominates
 - Linear extrapolation to the reconstruction level, non-linear to the particle level
 - ➤ Additional uncertainty on the particle level due to regularization procedure
 - ➤ The precision of the particle level comparison would be reduced
 - > The reduction of the precision would be
 - > Greater when the resolution of the distribution is worse
 - > Smaller when the bin width is enlarged
 - > This is why we chose to provide in our paper a folding procedure
 - ➤ Better precision than the unfolded results

> Folding procedure

 \triangleright The folded number of events in u_T bin i

Response Matrix R_{ii}

 X_i : the number of events in the $i^{th} p_T^W$ bin

 \mathcal{E}_i : the efficiency correction in the $i^{th} p_T^W$ bin 5 < u_T < 8

 F_i : the fiducial correction in the i^{th} u_T bin

 N_i^{corr} : the number of events in the i^{th} u_T bin $^{2 < u_T < 5}$

 \triangleright Response Matrix R_{ij} :

The probability for the events in one p_T^W bin to be reconstructed into different u_T bins

The instruction to calculate the covariance matrix and details of the whole folding procedure are introduced in the appendix of the paper (arXiv:2007.13504)

https://www-d0.fnal.gov/Run2Physics/WWW/results/final/EW/E20A/

> Summary

- First Tevatron Run II $p_T(W)$ measurement at $\sqrt{s} = 1.96$ TeV
 - \triangleright Focus on low $p_T(W)$ region
- ➤ The background subtracted data is compared to different predictions after PMCS simulation on the reconstruction level
 - > Uncertainty dominated by that due to the hadronic recoil calibration
 - ➤ Model uncertainty ignored
 - > PDF uncertainty negligible
- > Two models are excluded
 - ➤ Pythia8+ATLAS MB A2Tune+CTEQ6L1
 - ➤ Pythia8+CMS UE Tune CUETP8S1-CTEQ6L1+CTEQ6L1
- ➤ A folding procedure is provided for the comparison with other models
 - > Better precision than the unfolded results
 - ➤ Model dependence tested to be negligible
 - $\triangleright \chi^2$ difference smaller than the impact from the data fluctuation

Link to the paper:

https://www-d0.fnal.gov/Run2Physics/WWW/results/final/EW/E20A/ https://arxiv.org/abs/2007.13504

Backup

➤ Collins-Soper-Sterman (CSS) resummation formalism

Production of a vector boson in the collision of two hadrons

$$\frac{d\sigma(h_1h_2 \to VX)}{dQ^2dQ_T^2dy} = \frac{1}{(2\pi)^2}\delta(Q^2 - M_V^2) \int d^2b \ e^{i\vec{Q}_T \cdot \vec{b}} \widetilde{W}_{j\bar{k}}(b, Q, x_1, x_2) + Y(Q_T, Q, x_1, x_2)$$

b: impact parameter

 \triangleright the nonperturbative terms in the form of an additional factor $\widetilde{W}_{j\bar{k}}^{NP}(b,Q,x_1,x_2)$

$$\widetilde{W}_{j\bar{k}} = \widetilde{W}_{j\bar{k}}^{pert} \widetilde{W}_{j\bar{k}}^{NP}$$

Brock-Landry-Nadolsky-Yuan form

$$\widetilde{W}_{j\bar{k}}^{NP}(b,Q,x_1,x_2) = \exp\left(-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right) - g_1 g_3 \ln(100x_1x_2)\right) b^2$$

CSS: Nucl. Phys. B250, 199 (1985)

BLNY: Phys. Rev. D 67, 073016 (2003)

➤ Response Matrix *R*

 \triangleright The probability for the events in one p_T^W bin to be reconstructed into different u_T bins

$$R_{ij} = P(\mathcal{N}_i | \mathcal{X}_j)$$

 \mathcal{N}_i : the case that u_T is in the i^{th} bin \mathcal{X}_i : the case that p_T^W is in the i^{th} bin

 N_i : the number of events in the i^{th} u_T bin X_i : the number of events in the i^{th} p_T^W bin

$$N_i = \sum_j R_{ij} X_j$$

- \triangleright Purity R_{ii} :
- The probability for the events in one $p_T(W)$ bin to be reconstructed into the same u_T bin

Low purity caused by limited resolution Maximum Purity: $max(R_{ii}) \sim 45\%$

Minimum Purity: $min(R_{ii}) \sim 16\%$

2020/7/28

- Comparison to other theory models
 - ➤ Provide an unfolded particle-level result
 - > Directly compare to the theory prediction on the particle level
 - ➤ A common procedure widely used by other collaboration
 - > Provide a folding procedure
 - ➤ Account for the detector response and resolution effects
 - ➤ Compare to the background-subtracted data on the reconstruction level
 - > For these two approaches,
 - > Fiducial selection should be defined

$$p_T^e > 25 \text{ GeV}, |\eta^e| < 1.05$$

 $p_T^v > 25 \text{ GeV}, 50 < m_T < 200 \text{ GeV}$

- > Basic inputs are the same
- ➤ Basic inputs estimated from MC simulations
 - \triangleright Fiducial Correction: u_T distribution within fiducial volume
 - Response Matrix: correct detector effects and migration
 - ➤ Efficiency Correction

- > Statistical uncertainty dominated situation
 - \triangleright The χ^2 calculated on the reconstruction level:

$$\chi_{reco}^{2} = \left(N^{Data} - N^{Pred}\right)^{T} \Sigma^{-1} (N^{Data} - N^{Pred})$$

- \triangleright Σ is the bin-by-bin covariance matrix of the statistical uncertainty on the reconstruction level, which should be a diagonal matrix
- \triangleright If the data and the prediction is rotated by a matrix M, which is the unfolding matrix

$$\chi_{unfold}^{2} = (MN^{Data} - MN^{Pred})^{T} \Sigma'^{-1} (MN^{Data} - MN^{Pred})$$

 $\triangleright \Sigma'$ is the bin-by-bin covariance matrix of the statistical uncertainty on the particle level

$$\Sigma' = M\Sigma M^T$$

$$\begin{split} \chi_{unfold}^2 &= \left(MN^{Data} - MN^{Pred}\right)^T \Sigma'^{-1} (MN^{Data} - MN^{Pred}) \\ &= \left(N^{Data} - N^{Pred}\right)^T M^T M^{T^{-1}} \Sigma^{-1} M^{-1} M \left(N^{Data} - N^{Pred}\right) \\ &= \left(N^{Data} - N^{Pred}\right)^T \Sigma^{-1} \left(N^{Data} - N^{Pred}\right) \\ &= \chi_{reco}^2 \end{split}$$

> Same precision between the particle level and the reconstruction level comparisons

- > Systematic uncertainty dominated situation
 - \triangleright A simple unfolding procedure is to use R^{-1} as the unfolding matrix, M
 - \triangleright The response matrix of the systematic variation, $R' = R + \Delta R$
 - ➤ The uncertainty on the reconstruction level, a linear transformation

$$U_{reco} = R'X^{Pred} - RX^{Pred} = \Delta RX^{Pred}$$

➤ The uncertainty on the unfolding particle level, a non-linear transformation due to the inversion of the covariance matrix

$$U_{unfold} = R'^{-1}N^{Data} - R^{-1}N^{Data} = (R'^{-1} - R^{-1})N^{Data}$$

- ➤ The precision of the particle level comparison would be reduced
- > Unfolding method with a regularization scheme
 - ➤ No longer an unbiased estimation
 - > The reduction due to the non-linear transformation would be smaller
 - ➤ A model input or a regularization model required
 - ➤ Additional uncertainty due to the input model or the regularization
- ➤ The reduction of the precision:
 - > Greater when the purity is lower
 - > Smaller when the bin width is enlarged

> Folding procedure

- > We choose to provide a folding procedure instead of an unfolded result, because
 - ➤ Better precision on the reconstruction level than the particle level
 - ➤ Not affected by the low purity problem
 - > The rise and hence the shape of the spectrum can be resolved
 - ➤ Avoid arbitrary definitions of the addition unfolding uncertainties and correlations
- \triangleright The fraction of events in u_T bin i, \mathcal{N}_i

$$\mathcal{N}_i = \frac{N_i^{corr}}{\sum_{j=1}^5 N_j^{corr}}, \quad N_i^{corr} = \frac{\sum_{j=1}^6 R_{ij} \mathcal{E}_j X_j}{F_i}$$

 X_i : the number of events in the $i^{th} p_T^W$ bin

 \mathcal{E}_i : the efficiency correction factor in the i^{th} p_T^W bin

 F_i : the fiducial correction in the i^{th} u_T bin

 N_i^{corr} : the number of events after all the correction in the i^{th} u_T bin

 $\triangleright \mathcal{N}_i$ is the folded result

- > The systematic uncertainty and its estimation
 - ➤ In total, 11 systematic variations provided
 - First 10 variations for the uncertainty due to the hadronic recoil calibration
 - > 5 positive change variations + 5 negative change variations
 - Last variation for the uncertainty due to the electron energy and efficiency
 - \triangleright The covariance matrix of the systematic uncertainty, $\Sigma^{(Syst.)}$
 - > Different variations uncorrelated from each other
 - Each variation, correlated bin-by-bin
 - > The positive change variations and negative change variations are averaged

$$\Sigma^{(Syst.)} = \frac{\sum_{k=1}^{10} \Sigma^{(k)}}{2} + \Sigma^{(11)}$$

 $\triangleright \Sigma^{(k)}$ is the covariance matrix of the k^{th} variation, its element $\Sigma_{ij}^{(k)}$

$$\Sigma_{ij}^{(k)} = (\mathcal{N}_i^{(k)} - \mathcal{N}_i) \times (\mathcal{N}_j^{(k)} - \mathcal{N}_j)$$

 \triangleright The covariance matrix used in the χ^2 calculation, Σ

$$\Sigma = \Sigma^{(Data.\,Stat.)} + \Sigma^{(MC.\,Stat.)} + \Sigma^{(Syst.)}$$

- > The model dependence
 - > The folding inputs
 - \triangleright The efficiency correction, \mathcal{E}_i , derived with p_T^W dependence, Model independent
 - \triangleright The response matrix, R_{ij} , derived with $u_T p_T^W$ dependence, Model independent
 - \triangleright The fiducial correction, F_i , derived with u_T dependence, Model dependent
 - \triangleright Check by changing the peak and the width of p_T^W distribution by 20%
 - > The impact is negligible compared to the total uncertainty of the folded result
 - ➤ The systematic uncertainty and its correlation
 - > Estimated by systematic variations

$$U_{reco} = R'X^{Pred} - RX^{Pred} = \Delta RX^{Pred}$$

- > The uncertainty and the covariance matrix should be model dependent
- ➤ The basic inputs from all the variations are provided

21