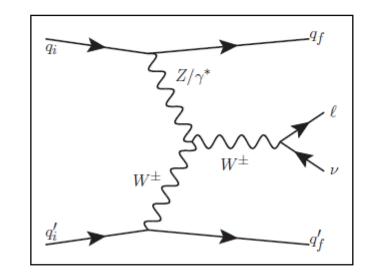
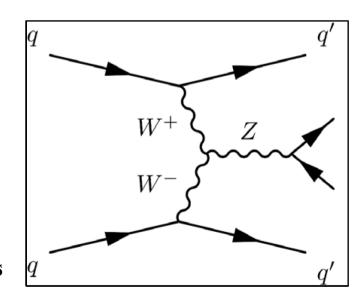


Measurements of Vector-boson production via weak-boson fusion at ATLAS

Jun Guo Shanghai Jiao Tong University


On behalf of the ATLAS Collaboration


ICHEP online, 07/28-08/06/2020

VBF

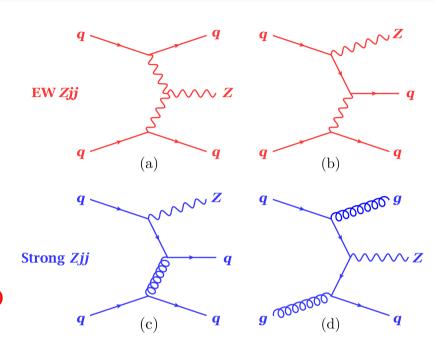
- Non-abelian nature of SM allows self-interactions of weak bosons
- Vector Boson Fusion (VBF) & Vector Boson
 Scattering (VBS) are key processes for studying the mechanism of EWSB
- In the latest ATLAS Zjj measurement with full Run2 data:

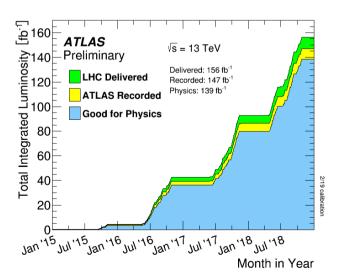
 arxiv.org/abs/2006.15458
 - Differential x-sections
 - Four variables: $p_{T,ll}$, m_{jj} , rapidity separation of two jets $|\Delta y_{jj}|$, signed azimuthal angle between two jets $\Delta \phi_{jj}$
 - Probe kinematic properties of VBF
 - Make constraints on anomalous weak-boson interactions

Measurement of Zjj

 Zjj: t-channel exchange of weak boson, extremely sensitive to VBF

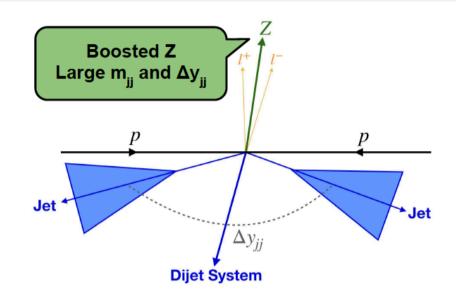
$$>$$
 Z-> e^+e^- or $\mu^+\mu^-$, 139 fb⁻¹ Run2 @13 TeV, 2015 to 2018


- Model-independent measurement, to compare generator performance
- Simulation:


➤ Signal: EW Zjj (Powheg, Herwig, Sherpa)

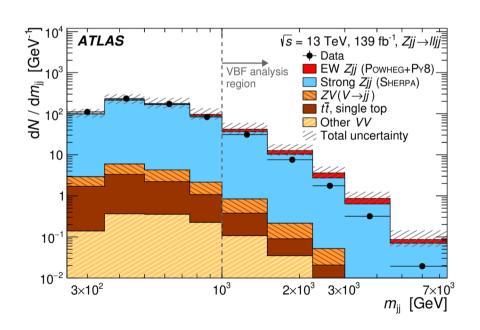
➤ Dominant bkgd: Strong Zjj (Sherpa, NLO MG5_aMC, LO MG5)

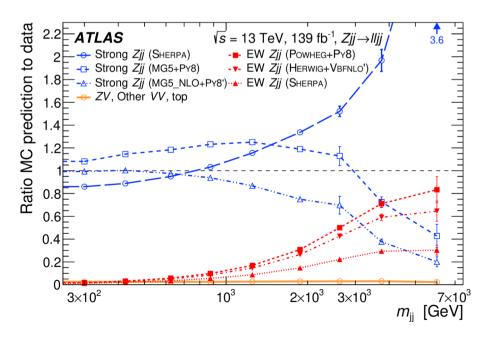
> Others: VV, tt, VVV, W+jets


Process	Generator	ME accuracy	PDF	Shower and hadronisation	Parameter set	
EW Zjj	Powheg-Box v1	NLO	CT10nlo	Pythia8 + EvtGen	n AZNLO	
	Herwig7 + Vbfnlo	NLO	MMHT2014lo	Herwig7 + EvtGen	default	
	Sherpa 2.2.1	LO (2-4j)	NNPDF3.0nnlo	Sherpa	default	
Strong Zjj	Sherpa 2.2.1	NLO (0-2j), LO (3-4j)	NNPDF3.0nnlo	Sherpa	default	
	MadGraph5_aMC@NLO	NLO (0-2j), LO (3-4j)	NNPDF2.3nlo	Pythia8 + EvtGen	A14	
	MadGraph5	LO (0-4j)	NNPDF3.0lo	Pythia8 + EvtGen	A14	
VV	Sherpa	NLO (0-1j), LO (2-3j)	NNPDF3.0nnlo	Sherpa	default	
$t\bar{t}$	Powheg-Box v2 hvq	NLO	NNPDF3.0nnlo Pythia8 + EvtC		A14	
VVV	Sherpa	LO (0-1j)	NNPDF3.0nnlo	Sherpa	default	
W+jets	Sherpa	NLO (0-2j), LO (3-4j)	NNPDF3.0nnlo	Sherpa	default	

- Select events consistent with EW Zjj topology
 - Opposite charge, same flavor lepton pair
 - Dijet system: $m_{ii}>1$ TeV, $|\Delta y_{ii}|>2.0$
 - Z boson centrally produced relative to dijet
 - Z boson & dijet required to be approximately balanced in transverse momentum

Sample	$Z \rightarrow ee$	$Z \rightarrow \mu\mu$			
Data	10870	12 125			
EW Zjj (Powheg+Py8)	$2670 \pm 120 \pm 280$	$2740 \pm 120 \pm 290$			
EW Zjj (Sherpa)	$1280 \pm 60 \pm 140$	$1350 \pm 60 \pm 150$			
EW Zjj (Herwig7+Vbfnlo')	$2290 \pm 100 \pm 210$	$2350 \pm 100 \pm 220$			
Strong Zjj (Sherpa)	$13500\pm600\pm4500$	$15100\pm600\pm5000$			
Strong Zjj (MG5+Py8)	$13140 \pm 480 \pm \text{ N/A}$	$14810 \pm 540 \pm \text{ N/A}$			
Strong Zjj (MG5_NLO+Py8')	$8800 \pm 300 \pm 1000$	$10000 \pm 400 \pm 1200$			
$ZV(V \to jj)$	179 ± 8 ± 6	$178 \pm 8 \pm 6$			
Other VV	45 ± 2 ± 2	45 ± 2 ± 2			
$t\bar{t}$, single top	92 ± 8 ± 6	98 ± 8 ± 6			
$W(\to \ell \nu)$ +jets, $Z(\to \tau \tau)$ +jets	negligible	negligible			




- Large spread of EW and strong Zjj prediction among different generators
- Large uncertainty of strong Zjj prediction, due to theory
- Disagreement between data and MC in event yields. In addition, key variables distributions also indicate the shape differences

Modelling

• Modelling:

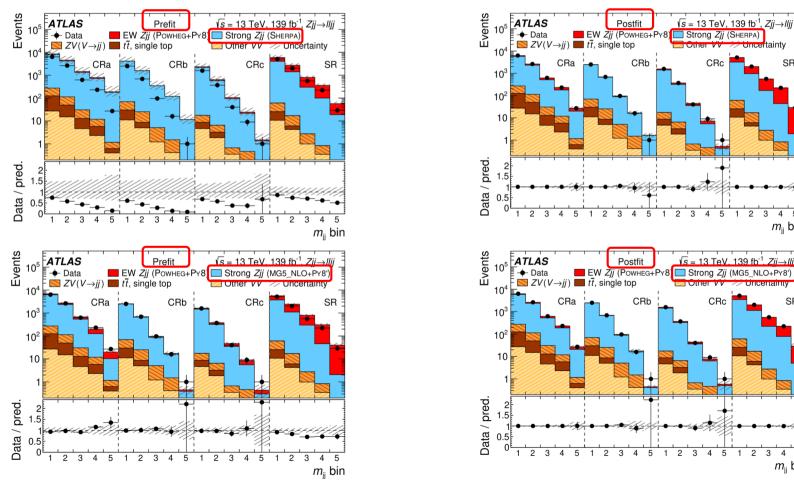
- Poor data/MC agreement prohibits extracting signal by simply subtracting background prediction
- Mismodelling also correlates with generators
- Data-driven method is used to constrain shape and normalization of strong Zjj while extracting EW Zjj

- Four regions are defined based on ξ_z and jet multiplicity in the rapidity interval between leading and subleading jet $|\xi_z| = |y_{\ell\ell} - 0.5(y_{j1} + y_{j2})| / |\Delta y_{jj}|$
- EW Zjj event yield is extracted in SR by binned maximum-likelihood fit, in all 4 regions simultaneously.

$$\ln \mathcal{L} = -\sum_{r,i} v_{ri}(\theta) + \sum_{r,i} N_{ri}^{\text{data}} \ln v_{ri}(\theta) - \sum_{s} \frac{\theta_{s}^{2}}{2}$$

$$v_{ri} = \mu_{i} v_{ri}^{\text{EW,MC}} + v_{ri}^{\text{strong}} + v_{ri}^{\text{other,MC}}$$

$$v_{\text{CRa,}i}^{\text{strong}} = b_{\text{L,}i} v_{\text{CRa,}i}^{\text{strong,MC}}, \qquad v_{\text{CRb,}i}^{\text{strong}} = b_{\text{H,}i} v_{\text{CRb,}i}^{\text{strong,MC}},$$

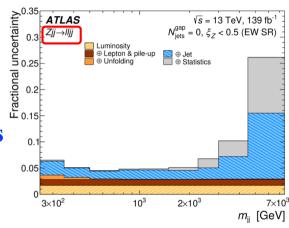

$$v_{\text{SR}i}^{\text{strong}} = b_{\text{L,}i} f(x_{i}) v_{\text{SR,}i}^{\text{strong,MC}}, \qquad v_{\text{CRc,}i}^{\text{strong}} = b_{\text{H,}i} f(x_{i}) v_{\text{CRc,}i}^{\text{strong,MC}}$$

 N^{gap} Strong Zii Strong Zii enhanced enhanced CRa **CRb** 9780 events 3286 events Strong Zii EW Zii enhanced enhanced CRc 7937 events 1992 events 0.5

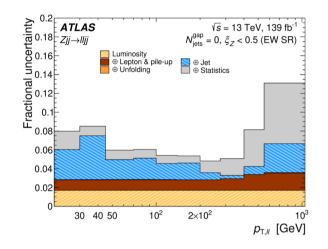
- μ_i : EW Zjj signal strength
- $b_{L,i}$ and $b_{H,i}$: adjusted to match prediction in CRa and CRb with data.
- $f(x_i)$ provides residual correction for extrapolation from CRa to SR

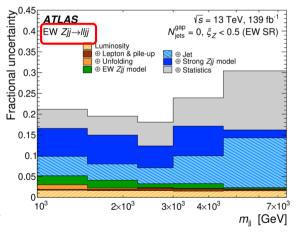
Signal Extraction <u>arxiv.org/abs/2006.15458</u>

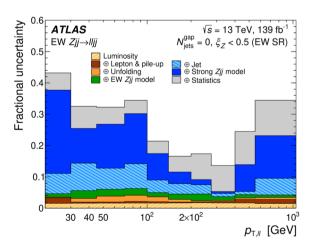
- EW Zjj is extracted by using different strong Zjj generators: Sherpa, NLO MG5_aMC, LO MG5
 - Different mismodelling before fits, but reach good data/MC agreement after fits
- Final EW Zjj signal is taken to be midpoint of the envelope of yields from the 3 different strong Zjj generators, which is also used to estimate the systematic.



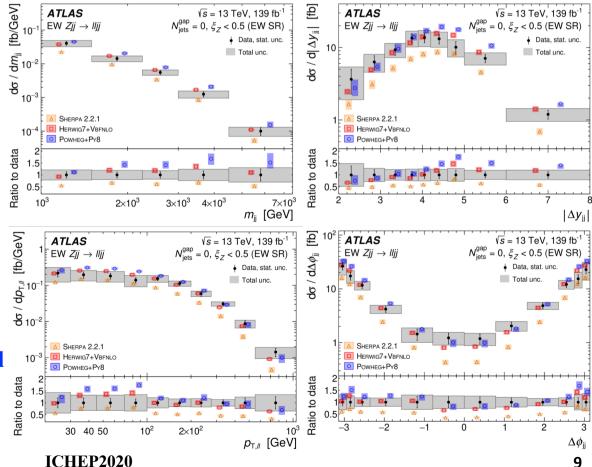
 $m_{\rm ji}$ bin


Systematic Uncertainties


• Dominant Systematics:

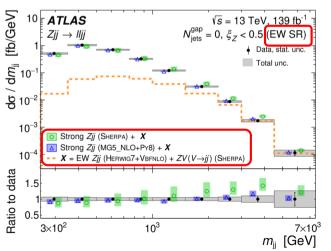

- Jet dominates inclusive Zjj result
- Strong Zjj modelling dominates
 EW Zjj result
 - Generator choice
 - Renormalization and factorization scale
 - PDF
- Statistics
- Various MC generators are used in SR and CR to estimate theory uncertainty

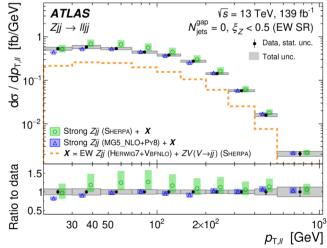
arxiv.org/abs/2006.15458

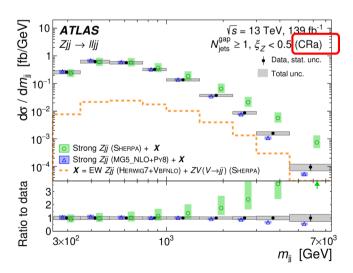


- Differential x-sect as function of \mathbf{m}_{ij} , $|\Delta \mathbf{y}_{ij}|$, $\mathbf{p}_{T,ll}$, $\Delta \phi_{ij}$, providing constraints on theory model to be used for future VBF and VBS measurements
 - Herwig7+VBFNLO reasonably agrees with data
 - Powheg+PY8 overestimates at high m_{ii} , high $|\Delta y_{ii}|$, intermediate $\mathbf{p}_{T,II}$
 - Sherpa significantly underestimates due to non-optimal setting of color flow

$$\sigma_{\rm EW} = 37.4 \pm 3.5 \, ({\rm stat}) \pm 5.5 \, ({\rm syst}) \, \, {\rm fb}$$


In excellent agreement with Herwig7+VBFNLO prediction:

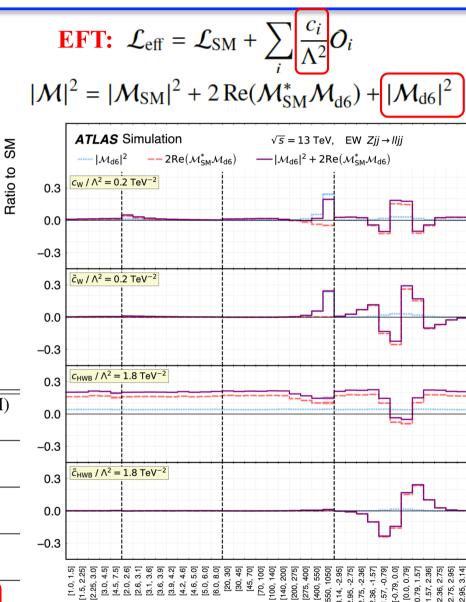

 39.5 ± 3.4 (scale) ± 1.2 (PDF) fb



Inclusive Zjj Production

- Differential x-sect as function of m_{jj} , $|\Delta y_{jj}|$, $p_{T,ll}$, $\Delta \phi_{jj}$, are measured in SR and CR, which can be used to re-evaluate EW Zjj when new Strong Zjj prediction is available
 - Strong Zjj: Sherpa and MG5_NLO+PY8
 - EW Zjj: Herwig7+VBFNLO
 - VZ: Sherpa, small contribution
- Overall, data is better described by MG5_NLO+PY8

Anomalous Weak-boson Interactions

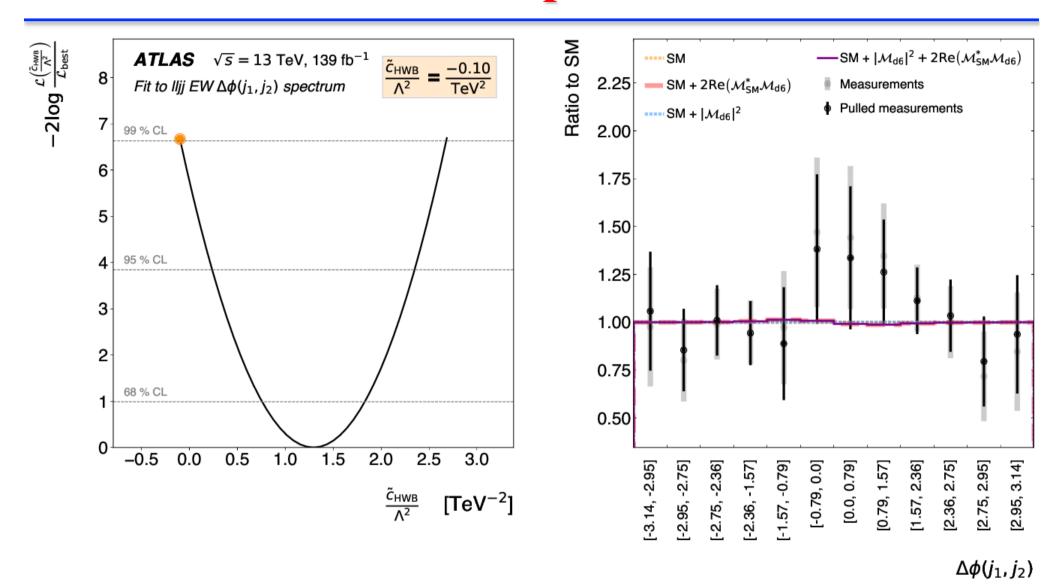

 Constraints are placed on dimension-6 operators in Warsaw basis

• CP-even: (O_W, O_{HWB})

• CP-odd: $(\widetilde{O}_W, \widetilde{O}_{HWB})$

- Δφ_{jj} is more sensitive to anomalous interactions and therefore used to constrain Wilson coefficients
 - Constraints on dimension-6 operators, derived with and without pure dimension-6 terms, show much less sensitivity from the pure dimension-6 terms

Wilson	Includes	95% confidence	<i>p</i> -value (SM)		
coefficient	$ \mathcal{M}_{d6} ^2$	Expected Observed			
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%	
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%	
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%	
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%	
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%	
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%	
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%	
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%	


 m_{ii} [TeV]

 $|\Delta y_{ii}|$

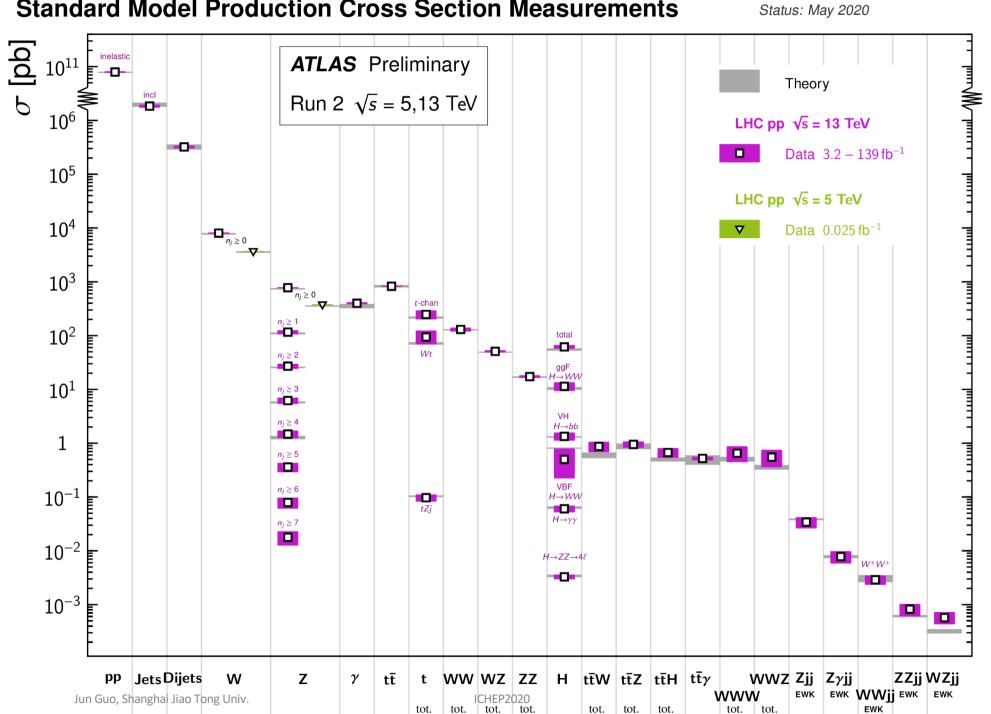
 $p_{\mathsf{T},\mathsf{II}}$ [GeV]

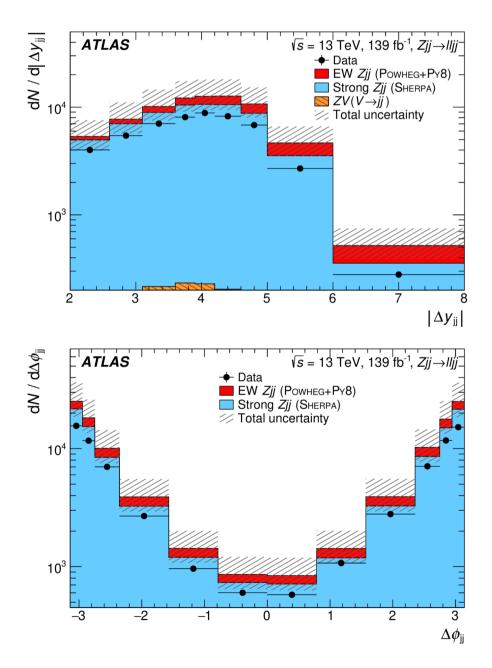
 $\Delta \phi_{ii}$

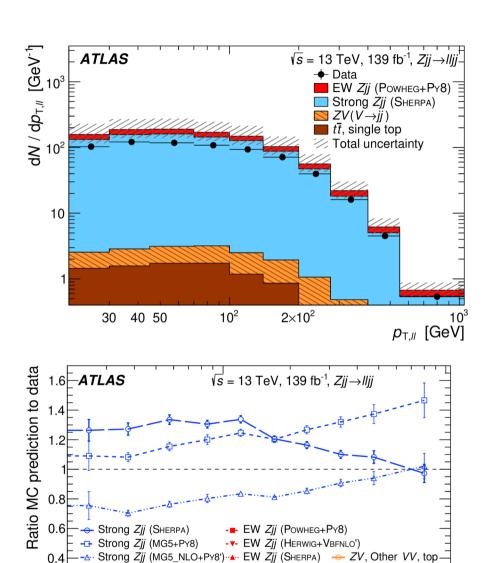
EFT Interpretation

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-27/

Summary


Full Run2 ATLAS data (139 fb⁻¹) is used to measure cross-sections of Zjj, to probe WWZ interaction and test $SU(2)_L \times U(1)_Y$ gauge symmetry of the SM

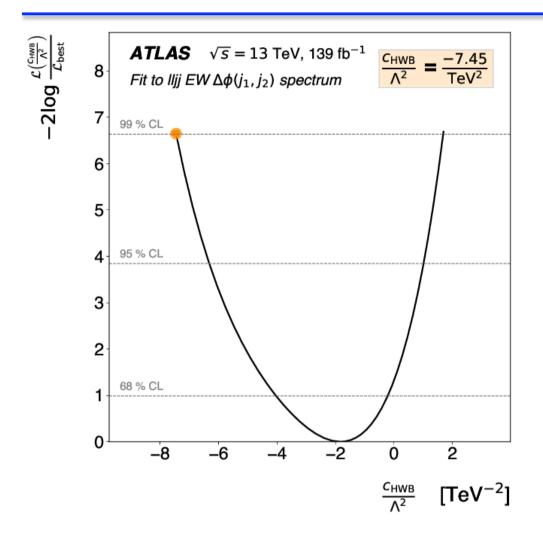

- ➤ Differential cross-sections are measured for EW and inclusive Zjj using 4 variables
 - ☐ Test different SM EW Zjj generators, under assumption of no BSM
 - □ Re-evaluate EW Zjj when new Strong Zjj prediction is available

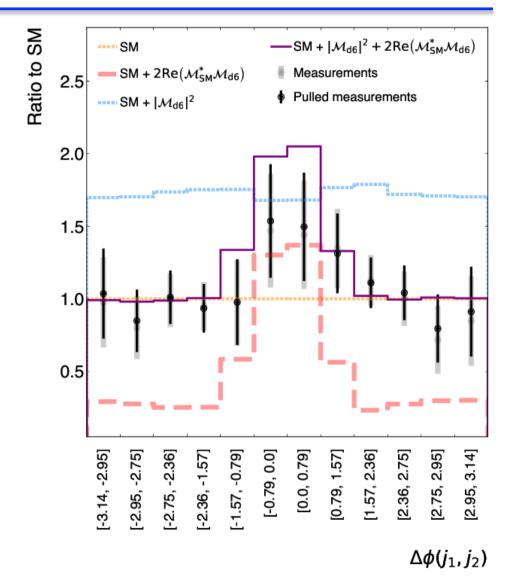

- >Search for anomalous weak-boson self-interactions, providing new avenue in search for BSM
 - Signed azimuthal angle between two jets $(\Delta \phi_{jj})$ is particularly sensitive to the interference between the SM and dimension-6 operators $\frac{\text{arxiv.org/abs/2006.15458}}{\text{arxiv.org/abs/2006.15458}}$

backup

Standard Model Production Cross Section Measurements

10²


 2×10^{2}


 $p_{T,//}$ [GeV]

30 40 50

EW Zjj SR, m_{jj} cross-section measurements									
$d\sigma / dm_{ij}$ [ab/GeV]		_	asui Cli	-	41	14	5.5	1.3	0.10
Stat. unc. [%]	_		_	_	13	13	13	1.3	26
Gen. choice [%]	_	_	_	_	11	11	9.4	14	7.6
Theory syst. [%]	_	_	_	_	8.1	6.6	4.3	3.1	1.2
Jet syst. [%]	_	_	_	_	8.4	6.9	6.3	9.4	1.2
Unfolding syst. [%]	_	_	_	_	2.3	1.1	0.7	0.6	0.6
Other syst. [%]	_	_	_	_	2.0	2.0	2.3	2.2	3.0
Inclusive Zjj SR, m_{jj} cross-section measurements									
$d\sigma / dm_{ii}$ [ab/GeV]	510	1040	700	320	120	31	8.8	1.7	0.12
Stat. unc. [%]	1.6	1.0	0.9	1.3	1.5	2.3	4.5	7.2	21
Jet syst. [%]	5.2	3.8	3.3	3.6	3.6	3.5	4.1	6.6	15
Unfolding syst. [%]	2.3	1.6	0.9	0.6	0.5	0.4	0.5	0.6	0.6
Other syst. [%]	2.8	2.8	2.8	2.8	2.8	2.8	2.9	2.9	3.4
Inclusive Zjj CRa,	m _{ii} cr	oss-sect	ion me	asurem	ents				<u> </u>
$d\sigma / dm_{jj}$ [ab/GeV]	250	610	560	320	130	37	8.7	1.6	0.10
Stat. unc. [%]	2.2	1.2	1.0	1.3	1.3	2.1	4.4	7.3	22
Jet syst. [%]	11	11	9.4	8.6	8.6	8.1	9.9	11	14
Unfolding syst. [%]	6.7	5.3	4.1	3.3	2.7	2.6	3.0	3.9	5.3
Other syst. [%]	2.3	2.3	2.3	2.4	2.4	2.5	2.5	2.6	2.8
Inclusive Zjj CRb,	m_{jj} cr	oss-sect	ion me	asuren	ents				
$d\sigma / dm_{jj}$ [ab/GeV]	190	430	330	150	54	10	1.4	0.11	-
Stat. unc. [%]	2.5	1.4	1.2	1.8	2.2	4.2	11	28	-
Jet syst. [%]	11	9.0	7.6	8.0	7.4	7.9	9.0	8.9	-
Unfolding syst. [%]	2.3	2.4	2.4	2.1	1.8	2.1	3.0	3.8	-
Other syst. [%]	2.3	2.3	2.3	2.4	2.4	2.5	2.6	2.6	-
Inclusive Zjj CRc, m_{jj} cross-section measurements									
$d\sigma / dm_{jj}$ [ab/GeV]	350	690	390	140	37	5.7	0.60	0.07	_
Stat. unc. [%]	1.9	1.2	1.2	2.0	2.7	5.8	18	36	_
Jet syst. [%]	6.7	3.6	3.3	5.0	2.3	4.7	5.5	4.0	-
Unfolding syst. [%]	1.2	1.0	0.8	0.9	1.1	1.6	2.1	2.3	-
Other syst. [%]	2.8	2.8	2.8	2.8	2.8	2.9	2.9	3.1	-
Low bin edge [TeV]	0.25	0.35	0.50	0.75	1.0	1.5	2.2	3.0	4.5
High bin edge [TeV]	0.35	0.50	0.75	1.0	1.5	2.2	3.0	4.5	7.5

