Measurements of Inclusive Multi-Boson Production at ATLAS

Siyuan Sun, Ph.D. on Behalf of the ATLAS Collaboration

ATLAS Detector and Data

Summary of EWK Measurements at ATLAS

			Status. May 2020	[fb ⁻¹]	Reference
γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2 \text{ fb (data)}$ NNLO (theory)			20.2	PLB 781 (2018) 55 JHEP 2002 (2020) 057
Ζγγ→ℓℓγγ	σ = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 fb (data) MCFM NLO (theory)	ATLAS Preliminary	A	20.3	PRD 93, 112002 (2016)
$-[n_{jet} = 0]$	σ = 3.48 + 0.61 - 0.56 + 0.3 - 0.26 fb (data) MCFM NLO (theory)			20.3	PRD 93, 112002 (2016)
$W\gamma\gamma \rightarrow \ell \gamma\gamma\gamma$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2 \text{ (b) (data)}$ MCFM NLO (theory)	Run 1,2 $\sqrt{s} = 7,8,13$ TeV	▲	20.3	PRL 115, 031802 (2015
$-[n_{jet} = 0]$	σ = 2.9 + 0.8 - 0.7 + 1 - 0.9 fb (data) MCFM NLO (theory)		▲	20.3	PRL 115, 031802 (2015
$WW\gamma \rightarrow e \nu \mu \nu \gamma$	or = 1.5 ± 0.9 ± 0.5 fb (data) VBFNLO+CT14 (NLO) (theory)			20.2	EPJC 77, 646 (2017)
	σ = 0.65 + 0.16 - 0.15 + 0.16 - 0.14 pb (data) Sherpa 2.2.2 (theory)			79.8	PLB 798 (2019) 134913
vv vv vv , (lol.)	$\sigma = 230 \pm 200 + 150 - 160$ fb (data) Madgraph5 + aMCNLO (theory)	A		20.3	EPJC 77, 141 (2017)
– WWW <i>→ℓvℓv</i> jj	$\sigma = 0.24 \pm 0.39 - 0.33 \pm 0.19$ fb (data) Madgraph5 + aMCNLO (theory)			20.3	EPJC 77, 141 (2017)
$-WWW \rightarrow \ell \nu \ell \nu \ell \nu$	σ = 0.31 + 0.35 - 0.33 + 0.32 - 0.35 fb (data) Madgraph5 + aMCNLO (theory)			20.3	EPJC 77, 141 (2017)
WWZ, (tot.)	$\sigma = 0.55 \pm 0.14 + 0.15 - 0.13 \text{ pb} \text{ (data)}$ Sherpa 2.2.2 (theory)			79.8	PLB 798 (2019) 134913
	σ = 4.25 + 0.63 - 0.6 + 0.56 - 0.47 pb (data) LHC-HXSWG (theory)			79.8	PRD 101 (2020) 012002
HJJ EWK, (IOI.)	σ = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 pb (data) LHC-HXSWG YR4 (theory)			20.3	EPJC 76, 6 (2016)
	$\sigma = 500 + 240 - 220 \pm 170 \text{ fb} \text{ (data)}$ NNLO QCD and NLO EW (LHC-HXSWG) (t	heory)		36.1	PLB 789 (2019) 508
– H(→VVVV)JJ EVVK	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \text{ pb} \text{ (data)}$ LHC-HXSWG (theory)			20.3	PRD 92, 012006 (2015)
- $H(\rightarrow \gamma \gamma)$ jj EWK (y <2.5)	$\sigma = 11.2 + 2.6 - 2.4 + 2.3 - 1.6$ fb (data) LHC-HXSWG (theory)	T		79.8	ATLAS-CONF-2018-028
Wjj EWK (M(jj) > 1 TeV)	$\sigma = 43.5 \pm 6 \pm 9$ fb (data) Powheg+Pythia8 NLO (theory)	Theory		20.2	EPJC 77, 474 (2017)
M(::) > E00 C-V	σ = 159 ± 10 ± 26 fb (data) Powheg+Pythia8 NLO (theory)			20.2	EPJC 77, 474 (2017)
-101(JJ) > 500 GeV	$\sigma = 144 \pm 23 \pm 26$ fb (data) Powheg+Pythia8 NLO (theory)	LHC pp √s = 13 TeV		4.7	EPJC 77, 474 (2017)
	$\sigma = 34.2 \pm 5.8 \pm 5.5$ fb (data) Powheg+Pythia8 NLO (theory)	Data		3.2	PLB 775 (2017) 206
ZJJEVVK	$\sigma = 10.7 \pm 0.9 \pm 1.9$ fb (data) PowhegBox (NLO) (theory)	stat		20.3	JHEP 04, 031 (2014)
$\gamma\gamma \rightarrow WW$	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ (b (data)}$ HERWIG++ (theory)	stat syst	A	20.2	PRD 94 (2016) 032011
	$\sigma = 7.8 \pm 1.5 + 1.4 - 1.3 \text{ fb (data)}$ Madgraph5 + aMCNLO (theory)	LHC pp √s = 8 TeV		36.1	PLB 803 (2020) 135341
ZγIJEWK	$\sigma = 1.1 \pm 0.5 \pm 0.4 \text{ fb} \text{ (data)}$ VBFNLO (theory)	Data		20.3	JHEP 07 (2017) 107
(WV+ZV)jj EWK	$\sigma = 45.1 \pm 8.6 \pm 15.9 - 14.6$ fb (data) Madgraph5 + aMCNLO + Pythia8 (theory)	stat ⊕ syst		35.5	PRD 100, 032007 (2019
	$\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28$ fb (data) PowheeBox (theory)			36.1	PRL 123, 161801 (2019
VV+VV+JJ EVVK	$\sigma = 1.5 \pm 0.5 \pm 0.2 \text{ fb} \text{ (data)}$ PowhedBox (theory)	LHC pp vs = 7 lev	A	20.3	PRD 96, 012007 (2017)
	$\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05$ fb (data) Sherpa 2.2.2 (theory)	Data stat		36.1	PLB 793 92019) 469
VVZJJ EVVK	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1$ fb (data) VBFNLO (theory)	stat ⊕ syst	A	20.3	PRD 93, 092004 (2016)
ZZjj EWK	σ = 0.82 ± 0.18 ± 0.11 fb (data) Sherpa 2.2.2 (theory)			139.0	arXiv:2004.10612
		1T		للعب	
		0.0 0.5 1.0	1.5 2.0 2.5 3.0	3.5	

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Inclusive m4l Measurement

- New result with full 139 fb⁻¹ dataset
- Inclusive measurement of 4l production from 20 GeV < m4l < 2 TeV
- Optimized for inclusivity and model independence
- More details can be seen in the post session <u>https://indico.cern.ch/event/868940/contributions/3816387/</u> <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-042/</u>

Inclusive m4l Measurement

- Select isolated, high quality, muons pT > 5 GeV and electrons pT > 7 GeV
- Select events with at least 2 e^+e^- and/or $\mu^+\mu^-$ pairs.
 - If more than 2, select the two with mass closest to the Z mass

Category	Requirement	
Event PreselectionFire at least one lepton trigger		
	≥ 1 vertex with 2 or more tracks	
Four-lepton signature	At least 4 leptons (e, μ)	
Lepton kinematics	$p_{\rm T} > 20/10$ GeV for leading two leptons	
Lepton separation	$\Delta R_{ij} > 0.05$ for any two leptons	Suppresses J/ψ
J/ψ -Veto	$m_{ij} > 5$ GeV for all SFOS pairs	and photon
Trigger matching	Baseline leptons matched to at least one lepton trigger	conversions
Quadruplet formation	At least one quadruplet with 2 Same-Flavour, Opposite-Sign (SFOS) pairs	
Quadruplet categorisation	4 signal, 0 non-signal: signal region	
	\leq 3 signal, \geq 1 non-signal: background control region	

Inclusive m4l Signal Region

Non-Prompt Lepton Bkg Estimation

- Estimate using Z+jet events where the hadronic jet is mis-identified as a lepton
- Fake Factor = $\frac{Events with Isolated Lepton}{Events of Non-Isolated Lepton}$
- Apply the factor to signal-like region but with non-isolated leptons to estimate background rate in the signal region
- Validated in signal-like regions but with lepton-pairs that have the same charge

Differential Cross-Section in m4l

• Fiducial cross-section is defined as the cross-section within the fiducial phase space under the area with detector coverage.

$$\sigma_{\rm fid} = \frac{N_{\rm obs} - N_{\rm bkg}}{C \times \mathcal{L}}$$

• Where *L* is the integrated luminosity and C is the correction factor that accounts for resolution and reconstruction efficiency

Differential Cross Sections

- Differential cross sections are also measured with respect to
 - 1. m_{12} , m_{34} lepton pair mass
 - 2. $|\Delta \varphi_{pairs}|, |\Delta y_{pairs}|$
 - 3. $P_{T_12} P_{T_34}$ lepton pair pT
 - 4. $|\Delta \dot{\phi}_{leading \ leptons}|$
 - 5. $|\cos \theta_{12}^*|, |\cos \theta_{34}^*|$ decay angles for each lepton pairs
- Different differential cross section distributions is sensitive to different BSM physics

(c) $p_{T,12}$

(d) $p_{T,34}$

B – L Symmetry Interpretation

- Baryon Number Lepton Number is a conserved quantity in SM
- Introduce additional $U_{B-L}(1)$ gauge symmetry that is broken with another Higgs $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- Z'Z' production contribute to the 4l cross-section.

 $m_{h_2} \sim \text{mass of the second Higgs particle}$ $\sin \alpha \sim \text{mixing angle between the SM and B-L}$ Higgs fields

Zγ Production Cross-Section Measurement

- Differential cross section measurement with 139 fb $^{-1}$ of data
- Published March 2020 at *JHEP 03 (2020) 054*

	Photons	Electrons	Muons
Kinematics:	$E_{\rm T} > 30 {\rm ~GeV}$	$p_{\rm T} > 30, 25 {\rm GeV}$	$p_{\rm T} > 30, 25 {\rm GeV}$
	$ \eta < 2.37$	$ \eta < 2.47$	$ \eta < 2.5$
	excl. $1.37 < \eta < 1.52$	excl. $1.37 < \eta < 1.52$	
Identification:	Tight $[59]$	Medium $[59]$	Medium [60]
Isolation:	FixedCutLoose [59]	FCLoose [59]	$FCLoose_FixedRad$ [60]
	$\Delta R(\ell,\gamma) > 0.4$	$\Delta R(\mu, e) > 0.2$	
Event selection:	$m(\ell\ell) > 4$	0 GeV, $m(\ell\ell) + m(\ell\ell\gamma)$	$> 182 \mathrm{GeV}$

Reject events where photon is a part of the Z decay

Zγ Signal Region Rejects FSR photons

 $m(ll) + m(ll\gamma) > 182$ GeV Cut 140 Events m(μμ) [GeV] 80 ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Accept Zy events 70 Reject Z bosons 120 where the photon is μμγ 60 that also emits a 110 part of the initial final state radiation 100 50 state radiation photon 90 40 80 Z/γ^* 30 70 20 60 10 50 40 ^t 0 100 110 120 130 80 90 140 150 160 170 70 $m(\mu\mu\gamma)$ [GeV]

 \overline{q}

Zγ Signal Region Distribution

• Major background also include Z+jets where jets are mis-reconstructed as photons

Measurement of Fiducial Cross-Section

• Fiducial cross-section is defined as the cross-section within the fiducial phase space under the area with detector coverage.

$$\sigma_{\rm fid} = \frac{N_{\rm obs} - N_{\rm bkg}}{C \times \mathcal{L}}$$

- Where \mathcal{L} is the integrated luminosity and C is the correction factor that accounts for detector resolution and reconstruction efficiency
- C is estimated using Zγ MC

 $\sigma_{\rm fid} = 533.7 \pm 2.1(\text{stat}) \pm 12.4(\text{syst}) \pm 9.1(\text{lumi}) \text{ fb}$.

• Measurements agrees Matrix NNLO and Sherpa NLO predicted cross-sections to within errors

ATLAS

$$Z(\rightarrow II)\gamma \ \sqrt{s} = 13 \ TeV, \ 139 \ fb^{-1}$$

 Data 2015-2018
 (stat)

 (stat)
 (total)

 $533.7\pm 2.1(\text{stat})\pm 15.4(\text{syst+lumi}) \ fb$

 MATRIX NLO (incl EW Z γjj)

 $444.2_{-18.9}^{+16.8}(\text{scale})\pm 9.8(\text{stat}+C_{\text{theory}}^{+}+\text{PDF}) \ fb$

 MATRIX NNLO (incl EW Z γjj)

 $518.9_{-14.9}^{+16.4}(\text{scale})\pm 12.1(\text{stat}+C_{\text{theory}}^{+}+\text{PDF}) \ fb$

 MATRIX NNLO × NLO EW (incl EW Z γjj)

 $513.5_{-14.9}^{+16.4}(\text{scale})\pm 11.3(\text{stat}+C_{\text{theory}}^{+}+\text{PDF}) \ fb$

 MATRIX NNLO + NLO EW (incl EW Z γjj)

 $518.3_{-14.9}^{+16.4}(\text{scale})\pm 11.3(\text{stat}+C_{\text{theory}}^{+}+\text{PDF}) \ fb$

 MATRIX NNLO + NLO EW (incl EW Z γjj)

 $518.3_{-14.9}^{+16.4}(\text{scale})\pm 11.3(\text{stat}+C_{\text{theory}}^{+}+\text{PDF}) \ fb$
 250
 300
 350
 400
 450
 500
 550

Integrated fiducial cross-section [fb]

Zγ Differential Cross Section

- Differential cross sections with respect to E_T^{γ} , $|\eta^{\gamma}|$, $m(ll\gamma)$, $p_T^{ll\gamma}$, $p_T^{ll\gamma}/m(ll\gamma)$ and $\Delta \varphi(ll, \gamma)$ are all measured
- Both NLO EW and NNLO QCD correction for Zγ cross-section has been computed.
- However no complete computation of how to combine the two corrections
- The E_T^{γ} distribution agrees better with the combining the two additively instead of multiplicatively

WW Differential Cross Section Measurement

- Measured using 36 fb⁻¹ of data
- Published October 2019 at *Eur. Phys. J. C* 79 (2019) 884

Selection requirement	Selection value	
p_{T}^ℓ	> 27 GeV	
η^ℓ	$ \eta^e < 2.47$ (excluding $1.37 < \eta^e < 1.52$),	
	$ \eta^{\mu} < 2.5$	
Lepton identification	TightLH (electron), Medium (muon)	
Lepton isolation	Gradient working point	
Number of additional leptons ($p_{\rm T} > 10 \text{ GeV}$)	0	
Number of jets ($p_T > 35$ GeV, $ \eta < 4.5$)	0	
Number of <i>b</i> -tagged jets ($p_{\rm T} > 20$ GeV, $ \eta < 2.5$)	0	
$E_{\rm T}^{\rm miss,track}$	> 20 GeV	
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	
m _{eµ}	> 55 GeV	
	Suppress top	
background		

WW Results

• Measured integrated fiducial cross section agrees well with NNLO predictions

 $\sigma_{\text{fid}} = (379.1 \pm 5.0 \text{ (stat)} \pm 25.4 \text{ (syst)} \pm 8.0 \text{ (lumi)}) \text{ fb}$

Prediction	Reference	Normalization	$\sigma_{ m fiduci}$	_{al} [fb]
MATRIX NNLO $q\bar{q} \rightarrow WW$ and $gg \rightarrow WW$ @ LO	[101–103]	-	357	$ \pm 20 \\ \pm 21 \\ \pm 20 $
MATRIX NNLO $q\bar{q} \rightarrow WW$ and $gg \rightarrow WW$ @ NLO	[104]	-	368	
(MATRIX NNLO $q\bar{q}$ and gg @ NLO) × NLO EW	[105]	-	347	
Sherpa 2.1.1 + OpenLoops $gg \rightarrow WW$	[36]	NLO [104]	19.0	± 1.9
Powheg-Box + Pythia 8 $q\bar{q} \rightarrow WW$ (+ Sh.+OL $gg \rightarrow WW$)	[30–34, 38]	NNLO [101–103]	350	
Powheg-Box + Herwig++ $q\bar{q} \rightarrow WW$ (+ Sh.+OL $gg \rightarrow WW$)	[30–34, 41]	NNLO [101–103]	357	
Sherpa 2.2.2 $q\bar{q} \rightarrow WW$ (+ Sh.+OL $gg \rightarrow WW$)	[54]	NNLO [101–103]	341	

WW Differential Cross-Sections

- MC under predicts cross-section at low lead lepton pT and $\Delta \phi_{eu}$
- Global χ^2/DoF difference is still small. Max 18.5/14 for Sherpa+OpenLoop in $p_T^{lead \ell}$

WW Measurement: Limit on aTGC

 5 dimension six operators can be added to the SM lagrangian to parameterize the effects of BSM physics in an model independent way

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$$

• Limits can be placed on the dimensionless coefficients *c*_i

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$

$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$

$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

$$\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$

$$\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi)$$

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4, 4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21, 18]	[-18, 17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{\tilde{W}}/\Lambda^2$	[-76, 76]	[-91, 91]

$$D_{\mu} = \partial_{\mu} + \frac{i}{2}g\tau^{I}W_{\mu}^{I} + \frac{i}{2}g'B_{\mu}$$
$$W_{\mu\nu} = \frac{i}{2}g\tau^{I}(\partial_{\mu}W_{\nu}^{I} - \partial_{\nu}W_{\mu}^{I} + g\epsilon_{IJK}W_{\mu}^{J}W_{\nu}^{K})$$
$$B_{\mu\nu} = \frac{i}{2}g'(\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu})$$

Where

Conclusion

- Lots of results and measurements coming from ATLAS
- Many I could not cover here today: ZZ production in the llvv final state <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-03/</u> WZ production cross section and gauge boson polarization <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-03/</u>
- Stay tuned for more updates in the coming months Please check the ATLAS SM public results twiki <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults</u>

Backup Slides

M4l Analysis: Electrons and Muons

		Category	Requirement	
		Kinematics	Muons :	$p_{\rm T} > 5 { m GeV}$
				If CaloTag: >15 GeV
•	Looser quality "Baseline"			$ \eta < 2.7$
	leptons are used in		Electrons:	$p_{\rm T}$ >7 GeV
	background estimation			$ \eta < 2.47$
		Vertex association	Both :	$ z_0 \sin\theta < 0.5 \text{ mm}$
		Identification:	Muons:	Loose ID
			Electrons:	LooseLH ID
		Overlap removal: Lepton-favoured		

 Tighter quality "signal" leptons with additional requirements on top of baseline requirements are used in for signal region measurement

Input objects	Baseline electrons and muons that are part of the quadruplet
Isolation	FixedCutPflowLoose working point
	Contribution from all other baseline leptons is subtracted
Cosmic muon veto	Muons: $ d_0 < 1 \text{ mm}$
Impact Parameter	Muons: $d_0/\sigma_{d_0} < 3$
	Electrons: $d_0/\sigma_{d_0} < 5$
Stricter Electron ID	Electrons: LooseBLayerLH ID

Zγ Analysis: Z+jet Estimation

https://arxiv.org/pdf/1810.05087.pdf

- Analogous to the non-prompt electron/muon estimation in the m4l analysis except now it's photons
- Measure the number of photons which fail quality/isolation
- The number of estimated Z+jets background events in the A is predicted by

$$\#bkg \text{ in } A = \#bkg \text{ in } B * \frac{\#bkg \text{ in } C}{\#bkg \text{ in } D} * R$$
$$R_{bkg} = \frac{N_{bkg}^{A,MC} \cdot N_{bkg}^{D,MC}}{N_{bkg}^{B,MC} \cdot N_{bkg}^{C,MC}},$$

Zγ Analysis: TTγ estimation

- Simulated using MC.
- Cross-checked in a region kinematically similar to the signal region but with e+mu flavors instead of same flavor ee or mumu leptons.

Pile-Up Photon Estimation

- On average 33 pp collisions occur in the same bunch crossing
- Photons that originate far from the pp interaction that produced the Z mainly come from other "pile up" pp collisions
- Select photons which convert to a pair of electrons on the inner most layer of the silicon tracker.
- Reconstruct the original direction of the photon based on the converted electrons
- Find the difference in the longitudinal coordinate (\mathcal{Z}) of the photon and the Z boson production vertex

$$\Delta z = z_{\gamma} - z_{\rm vtx}$$

 $|\Delta z| > 50 \text{ mm}$ Dominated by pileup photons

Zγ Analysis: Z+jet Estimation

- Analogous to the non-prompt electron/muon estimation in the m4l analysis except now it's photons
- Find

Figure 2: Schematic representation of the photon identification discriminating variables, from Ref. [23]. $E_C^{S_N}$ identify the electromagnetic energy collected in the *N*-th longitudinal layer of the electromagnetic calorimeter in a cluster of properties *C*, identifying the number and/or properties of selected cells. E_i is the energy in the *i*-th cell, η_i the pseudorapidity centre of that cell.

$$E_T^{iso} > 0.065 * \left(E_T^{\gamma} + 2 \text{ GeV} \right)$$
 Instead of $\frac{E_T^{iso}}{E_T^{\gamma}} < 0.065$

https://arxiv.org/pdf/1810.05087.pdf

Zγ Analysis: Z+jet Estimation

• The number of estimated Z+jet background events in the A is predicted by

 $\#bkg \text{ in } A = \#bkg \text{ in } B * \frac{\#bkg \text{ in } C}{\#bkg \text{ in } D} * R$

- Where *R* is the correlation between isolation and photon quality estimated using MC
- Also have to subtract expected Zγ signal events from each region B,C and D when estimating background.

$$R_{\rm bkg} \cdot \left((N^{B,\rm data} - f^{B,\rm MC} N^{A,\rm data}_{\rm signal}) \cdot \frac{(N^{C,\rm data} - f^{C,\rm MC} N^{A,\rm data}_{\rm signal})}{(N^{D,\rm data} - f^{D,\rm MC} N^{A,\rm data}_{\rm signal})} \right)$$

C) Same as SR but photons fail quality	A) Signal Region requirements
D) Fail both quality + isolation	B) Same as SR but photons fail isolation

$$R_{\rm bkg} = \frac{N_{\rm bkg}^{A,\rm MC} \cdot N_{\rm bkg}^{D,\rm MC}}{N_{\rm bkg}^{B,\rm MC} \cdot N_{\rm bkg}^{C,\rm MC}},$$

Zγ NLO EWK + QCD Combination

$$\sigma^{\rm NLO} = \sigma^{\rm LO} \left[(1 + \delta_{\rm QCD}) \left(1 + \delta_{\rm EW,q\overline{q}} \right) + \delta_{\rm EW,q\gamma} + (\delta_{\gamma\gamma}) \right] = \sigma^{\rm NLO \,QCD} \left(1 + \delta_{\rm EW,q\overline{q}} \right) + \Delta \sigma_{q\gamma}^{\rm NLO \,EW} + (\Delta \sigma_{\gamma\gamma}) , \qquad (2.4)$$

where the relative QCD, EW, and photon-induced corrections are defined by

$$\delta_{\rm QCD} = \frac{\sigma^{\rm NLO\,QCD} - \sigma^{\rm LO}}{\sigma^{\rm LO}}, \qquad \qquad \delta_{\rm EW,q\overline{q}} = \frac{\Delta \sigma_{q\overline{q}}^{\rm NLO\,EW}}{\sigma^{\rm 0}}, \qquad \qquad \delta_{\rm EW,q\overline{q}} = \frac{\Delta \sigma_{q\overline{q}}^{\rm NLO\,EW}}{\sigma^{\rm 0}}, \qquad \qquad \delta_{\rm Y\gamma} = \frac{\Delta \sigma_{\gamma\gamma}}{\sigma^{\rm LO}}, \qquad \qquad (2.5)$$

https://link.springer.com/content/pdf/10.1007/JHEP02(2016)057.pdf

WW top Background Estimation

- Largest background is ttbar and tW
- Top background is selected for by removing b jet and jet veto requirements
- An H_T > 200 GeV requirement is added to limit the amount of WW

$$N_{\rm SR}^{\rm top} = \frac{N_{\rm CR}^{\rm top}}{\epsilon_{H_{\rm T}}} \times \epsilon_{\rm jet-veto}$$

- The estimated amount of top in the signal region is the number of tops observed in the control region scaled by the efficiency of the jet veto and H_T cuts
- Efficiencies are mainly derived from MC but with a correction factor using data

7/17/2020

Zγ Pile-Up Photon Estimation

$Z\gamma$ Measurement of Fiducial Cross-Section

			Cross-section [fb]
$e^+e^-\gamma$	530.4	\pm 9.0 (uncorr)	\pm 11.7 (corr) \pm 9.0 (lumi)
$\mu^+\mu^-\gamma$	535.0	\pm 6.1 (uncorr)	\pm 11.5 (corr) \pm 9.1 (lumi)
$\ell^+\ell^-\gamma$	533.7	\pm 5.1 (uncorr)	\pm 11.6 (corr) \pm 9.1 (lumi)
Sherpa LO	438.9	\pm 0.6 (stat)	
Sherpa NLO	514.2	\pm 5.7 (stat)	
MadGraph NLO	503.4	\pm 1.8 (stat)	
Matrix NLO	444.2	\pm 0.1 (stat)	$\pm 4.3 (C_{\text{theory}}) \pm 8.8 (PDF) ^{+16.8}_{-18.9} (\text{scale})$
Matrix NNLO	518.9	\pm 2.0 (stat)	\pm 5.1 (C _{theory}) \pm 10.8 (PDF) $^{+16.4}_{-14.9}$ (scale)
Matrix NNLO \times NLO EW	513.5	\pm 2.0 (stat)	\pm 2.7 (C _{theory}) \pm 10.8 (PDF) $^{+16.4}_{-14.9}$ (scale)
Matrix NNLO + NLO EW	518.3	\pm 2.0 (stat)	\pm 2.7 (C _{theory}) \pm 10.8 (PDF) $^{+16.4}_{-14.9}$ (scale)

• Fiducial cross-section is defined as the cross-section within the fiducial phase space under the area with detector coverage.

$$\sigma_{\rm fid} = \frac{N_{\rm obs} - N_{\rm bkg}}{C \times \mathcal{L}}$$

- Where \mathcal{L} is the integrated luminosity and C is the correction factor that accounts for detector acceptance and reconstruction efficiency
- *C*_{117/2020} **C**_{117/2020} **C**_{117/2020}

WW analysis ttbar Control Region

