Recent measurements of the top-quark mass using the ATLAS detector at the LHC

Serena Palazzo on behalf of the ATLAS collaboration

ICHEP2020 | Prague

28 July - 06 August 2020

Physics motivations

Why top-quark physics?

- ↔ Heaviest elementary particle known. $m_t = 173.34 \pm 0.27(stat) \pm 0.71(syst) \text{ GeV}$
- ↔ Its large mass is a fundamental parameter in the Standard Model ⇒ highest coupling to the Higgs boson.
- ↔ Due to its very short lifetime, the top-quark decays before hadronizing: $t \Rightarrow Wb \sim 10^{-24} s$ vs hadronization $\sim 10^{-23} s \Rightarrow$ allows to study the properties of a bare quark.
- ↔ LHC is a top quark factory, large pair production cross-section.

Why measure the top-quark mass?

- ↔ The top-quark mass is a fundamental parameter of the Standard Model:
 - Electroweak precision tests.
 - Constrained the mass of the Higgs boson (before its discovery at the LHC).
 - Stability of the Standard Model vacuum.
 - The measured values of m_H and m_t place the SM vacuum at the border between stability and metastability JHEPO8(2012)098.

Methods to measure the top-quark mass

Direct m_t measurement:

- \hookrightarrow Extraction from kinematic reconstruction of the invariant mass of top quark decay products ("Standard method").
- \rightarrow Data compared to MC simulations with different input values of m_t .
- \hookrightarrow Relying on jets, parton showers (LO), non-perturbative effects.
 - Still controversial argument (see arXiv:1712.02796).

Indirect m_t measurement:

- \hookrightarrow Measurement from cross-sections (inclusive/differential).
 - In a well defined renormalization scheme, e.g. m_t^{pole} (definition of free particle mass).

 $\hookrightarrow \mathcal{O}(1 \text{GeV}) | m_{+}^{MC} - m_{+}^{pole} |$ Nucl.Phys.Proc.Suppl. 185(2008) 220-226

m_t^{pole} using $t\bar{t}+1$ -jet with the ATLAS experiment (8 TeV pp collisions) • JHEPLI(2019)150

m_t^{pole} from $t\bar{t}$ +1-jet production : Analysis strategy

Indirect measurement of m_t^{pole} from differential cross-sections measurement of $t\bar{t}$ +1-jet production.

- $^{ \rm q_{\rightarrow}}\,$ Data collected by the ATLAS detector at 8 TeV of $\it pp$ collisions (${\cal L}$ = 20.2 $\it fb^{-1})$
- $\hookrightarrow \sigma_{t\bar{t}+1-jet}$ is more sensitive than $\sigma_{t\bar{t}}$ (gluon radiation depends on the mass of the quarks).

Method to extract m_t^{pole} :

- \hookrightarrow Measure normalised $t\bar{t}+1$ -jet differential distribution, as a function of the invariant mass of the $t\bar{t}+1$ -jet system $(m_{t\bar{t}+1-jet})$.
- \hookrightarrow Compare the unfolded distribution at parton level to NLO+PS $t\bar{t}$ +1-jet calculations.

$$\mathcal{R}(m_t^{\text{pole}},\rho_s) = \frac{1}{\sigma_{t\bar{t}+1-\text{jet}}} \frac{d\sigma_{t\bar{t}+1-\text{jet}}}{d\rho_s} (m_t^{\text{pole}},\rho_s), \ \rho_s = \frac{340 \,\text{GeV}}{m_{t\bar{t}+1-\text{jet}}}$$

tī+1-jet @ 8 TeV

m_t^{pole} from $t\bar{t}$ +1-jet production: Objects definition reconstruction

Event selection and reconstruction:

- \hookrightarrow Exactly 1 reconstructed *e* or μ .
- $\hookrightarrow >= 5$ jets (anti- k_t jet reconstruction algorithm).
- \hookrightarrow The extra jet is the leading jet with $p_T > 50$ GeV and $|\eta| < 2.5$.
 - Not used in the $t\bar{t}$ reconstruction.

Channel	e+jets	μ +jets
tī	5530 ± 470	7080 ± 600
Single top	191 ± 15	226 ± 18
W+jets	100 ± 33	121 ± 37
Z+jets	24 ± 8	13 ± 4
Multijet	21 ± 11	<11
Prediction Data	$5870 \pm 540 \\ 6379$	7440 ± 660 7824

 \hookrightarrow Signal purity of ~ 94% for the *e*+jets channel and ~ 95% for the μ +jets.

tī+1-jet @ 8 TeV

m_t^{pole} from $t\bar{t}+1$ -jet production: Top quark mass determination

- \hookrightarrow Unfolding at parton level.

The least-squares method is used, the fit minimize a χ^2 :

$$\chi^2 = \sum_{ij} (\mathcal{R}_i^{data} - \mathcal{R}_i^{theory}(m_t^{pole})) V_{ij}^{-1} (\mathcal{R}_j^{data} - \mathcal{R}_j^{theory}(m_t^{pole}))$$

m_{t}^{pole} from $t\bar{t}$ +1-jet production: Results

Mass scheme	m _l ^{pole} [GeV]	$m_t(m_t)$ [GeV]	
Value Statistical uncertainty	171.1 0.4	162.9 0.5	
Simulation uncertainties			
Shower and hadronisation	0.4	0.3	Madalling
Colour reconnection	0.4	0.4	wouelling
Underlying event	0.3	0.2	
Signal Monte Carlo generator	0.2	0.2	
Proton PDF	0.2	0.2	
Initial- and final-state radiation	0.2	0.2	
Monte Carlo statistics	0.2	0.2	
Background	< 0.1	< 0.1	
Detector response uncertainties			
Jet energy scale (including b-jets)	0.4	0.4	Detector
Jet energy resolution	0.2	0.2	
Missing transverse momentum	0.1	0.1	
b-tagging efficiency and mistag	0.1	0.1	
Jet reconstruction efficiency	<0.1	<0.1	
Lepton	< 0.1	< 0.1	
Method uncertainties			
Unfolding modelling	0.2	0.2	
Fit parameterisation	0.2	0.2	
Total experimental systematic	0.9	1.0	
Scale variations	(+0.6, -0.2)	(+2.1, -1.2)	Theory
Theory PDF⊕α _s	0.2	0.4	
Total theory uncertainty	(+0.7, -0.3)	(+2.1, -1.2)	
Total uncertainty	(+1.2, -1.1)	(+2.3, -1.6)	

Dominant uncertainties:

↔ JES

 \hookrightarrow PS and hadronisation

- \hookrightarrow Color reconnection
- \hookrightarrow Scale variation

$$m_t^{pole} = 171.1 \pm 0.4 (stat) \pm 0.9 (syst)_{-0.3}^{+0.7} (theo) \text{GeV}$$

$$m_t(m_t) = 162.9 \pm 0.5(stat) \pm 1.0(syst)^{+2.1}_{-1.2}(theo) ext{GeV}$$

Total uncertainty: $\Delta m_t^{pole} = \stackrel{+1.2}{-1.1} \text{GeV}$

tt+1-jet @ 8 TeV

m^{pole} summary

- $\hookrightarrow m_t^{pole}$ result obtained from data unfolded to parton level is compatible with previous measurements.
- Statistical and systematic uncertainties reduced of a factor 2 w.r.t 7 TeV measurement → JHEP10(2015)121.

Top-quark mass using a leptonic invariant mass with the ATLAS experiment (13 TeV *pp* collisions) •ATLAS-CONF_2019-045

Soft Muon Tagging *m_t*: analysis strategy

Direct measurement of m_t in the $t\bar{t} \rightarrow \ell + j$ ets channel with an experimental technique which exploits semileptonic decays of *b*-hadrons produced in the top-quark decay chain.

 \hookrightarrow Data collected by the ATLAS detector at 13 TeV of *pp* collisions ($\mathcal{L} = 36.1 \text{ fb}^{-1}$).

 \hookrightarrow "Experimental method": semi leptonic decay of B-hadrons $m_{\ell\mu} \to m_t$.

 purely leptonic, less sensitive to jets uncertainty.

1st proof of principle: CDF \bullet Phys. Rev. D80 (2009) 051104, m_t =180.5 ± 12.5 GeV Similar idea: with J/ $\psi \rightarrow \mu\mu$ from CMS \bullet JHEP 12 (2016) 123, m_t =173.5 ± 3.1 GeV

 $BR \sim 0.2$

Soft Muon Tagging *m_t*: event selection and reconstruction

Event selection:

- \hookrightarrow Exactly 1 isolated *e* or μ .
- \hookrightarrow Cuts on E_T^{miss} and M_T^W .
- $\hookrightarrow \geq 4$ jets.
- $\rightarrow \geq 1$ *b*-jet, 77% efficiency WP.
- $\stackrel{q_{\rightarrow}}{\rightarrow} \geq 1$ SMT jet (i.e. μ with $p_T > 8$ GeV found within $\Delta R < 0.4$ of a jet.).

Process	Yield (OS)	Yield (SS)
$t\bar{t}$ (SMT from <i>b</i> - or <i>c</i> -hadron)	56000(4000)	34800(2800)
$t\bar{t}$ (SMT from $W \rightarrow \mu\nu$)	2190(320)	4.9(36)
tī (SMT fake)	1490(210)	1240(170)
Single top t-chan	770(70)	490(40)
Single top s-chan	63(6)	49(4)
Single top Wt	1840(140)	1260(100)
W+jets	1600(400)	1080(240)
Z+light jets	210(80)	15(6)
Z+HF jets	550(170)	310(100)
Diboson	17.2(29)	6.3(14)
Multi-jet	530(140)	480(130)
Total Expected	65 000 (5000)	39800(3000)
Data	66 891	42 087

 \sim 86% signal purity

Soft Muon Tagging *m_t*: mass extraction

- \hookrightarrow Profiled Binned likelihood template fit in the 15-80 GeV region of $m_{\ell\mu}$.
 - Systematic uncertainties used as nuisance parameters.
- \hookrightarrow Higher sensitivity of OS region to m_t well visible.

Soft Muon Tagging *m_t*: **fit results**

Soft Muon Tagging *m_t*: systematic uncertainties

Source	Unc. on m_t [GeV]	Stat. precision [GeV]
Data statistics	0.40	
Signal and background model statistics	0.16	
Monte Carlo generator	0.04	± 0.07
Parton shower and hadronisation	0.07	±0.07
Initial-state QCD radiation	0.17	±0.07
Parton shower α_s^{FSR}	0.09	± 0.04
b-quark fragmentation	0.19	± 0.02
HF-hadron production fractions	0.11	±0.01
HF-hadron decay modelling	0.39	± 0.01
Underlying event	< 0.01	± 0.02
Colour reconnection	< 0.01	± 0.02
Choice of PDFs	0.06	± 0.01
W/Z+jets modelling	0.17	± 0.01
Single top modelling	0.01	± 0.01
Fake lepton modelling $(t \rightarrow W \rightarrow \ell)$	0.06	±0.02
Soft muon fake modelling	0.15	± 0.03
Jet energy scale	0.12	± 0.02
Soft muon jet p _T calibration	< 0.01	± 0.01
Jet energy resolution	0.07	± 0.05
Jet vertex tagger	< 0.01	± 0.01
b-tagging	0.10	± 0.01
Leptons	0.12	±0.00
Missing transverse momentum modelling	0.15	± 0.01
Pile-up	0.20	±0.05
Luminosity	< 0.01	± 0.01
Total systematic uncertainty	0.67	±0.04
Total uncertainty	0.78	± 0.03

Dominant uncertainties from modelling:

- \hookrightarrow HF-hadron decays
- \rightarrow *b*-quark frag: r_b unc

A ISR

↔ Pile-up reweighting

Soft Muon Tagging *m_t*: results

Conclusions

- \hookrightarrow m_t is a key parameter in the SM and BSM physics, it is known with high precision.
- $\hookrightarrow m_t$ is investigated within a variety of approaches.
- \hookrightarrow Cross section measurements are being used to perform an Indirect measurement of m_t^{pole} .
- ↔ Experimental technique which exploits semileptonic decays of *b*-hadrons used to perform a direct measurement the top quark mass.
- ↔ All those methods provide precise measurements of the top-quark mass compatible with previous results.

Thanks for the attention!

BACKUP

- \hookrightarrow Here truncated at two loops to match the precision of the $t\bar{t}$ + 1-jet cross section used to extract the mass in both schemes.

$$m_t^{pole} = m_t(m_t) \left(1 + \frac{4}{3} \frac{\alpha_s(\mu = m_t)}{\pi} \right) + \mathcal{O}(\alpha_s^2)$$

The pole mass result is obtained for $\alpha_{\rm s}$ (163 GeV) \sim 0.116

- \hookrightarrow When converting $m_t(m_t)$ to m_t^{pole} the obtained value is pprox 170.9 GeV.
 - Good agreement with the direct extraction of m^{pole}_t.