Searches for flavour violation and flavour changing neutral currents in top quark final states

ICHEP 2020, Prague Nicolas Köhler on behalf of the ATLAS collaboration

Lepton flavour universality

- The Standard Model predicts that the charged leptons ($e/\mu/\tau$) only differ in their mass
- Under the electroweak force, they interact universally
- Lepton flavour universality
- I.e. all the charged leptons of different flavours have the same coupling strength to the *W* boson
- *W* boson decays have been precisely measured at LEP
- However, in $\mathcal{BR}(W\to\tau\nu),$ a deviation $>2\sigma\,$ from the SM prediction was observed
- Measuring $\mathcal{BR}(W \to \tau \nu)/\mathcal{BR}(W \to \mu \nu)$ with a precision of 1-2% would either prove LEP discrepancy or rule it out

- Exploiting the $t\bar{t}$ final state, a large unbiased sample of *W* bosons can be obtained
- Thereby, one decaying top is used to trigger the event (tag lepton) while the other one provides the (unbiased) W boson used in the measurement (probe lepton)
- Can go as low in transverse momentum as reconstruction works
- Only look at leptonic tau decays to profit from smaller reconstruction uncertainties
- Main task: distinguish prompt muons from taus decaying into muons

- Exploiting the $t\bar{t}$ final state, a large unbiased sample of *W* bosons can be obtained
- Thereby, one decaying top is used to trigger the event (tag lepton) while the other one provides the (unbiased) W boson used in the measurement (probe lepton)
- Can go as low in transverse momentum as reconstruction works
- Only look at leptonic tau decays to profit from smaller reconstruction uncertainties
- Main task: distinguish prompt muons from taus decaying into muons
- Use muon transverse momentum and unsigned transverse impact parameter with respect to beamline

- Exploiting the $t\bar{t}$ final state, a large unbiased sample of *W* bosons can be obtained
- Thereby, one decaying top is used to trigger the event (tag lepton) while the other one provides the (unbiased) W boson used in the measurement (probe lepton)
- Can go as low in transverse momentum as reconstruction works
- Only look at leptonic tau decays to profit from smaller reconstruction uncertainties
- Main task: distinguish prompt muons from taus decaying into muons
- Use muon transverse momentum and unsigned transverse impact parameter with respect to beamline
- Allows to also distinguish leptonic tau decays from muons from hadron decays

- Applying standard $t\overline{t}$ (di-lepton, $e\mu/\mu\mu$) selection:
- 2 b-tagged jets, 2 oppositely charged leptons, Z boson veto for di-muon channel
- Tag lepton must pass trigger requirement
- Probe muon must have pT > 5GeV
- ▶ Allows to probe a large p_T range
- Remaining backgrounds for the measurement:
 - Hadrons decaying into muons
 - Z+2b-tagged jets in di-muon channel

The transverse impact parameter d₀

- Distance of closest approach of muon tracks in the transverse plane
- Defined with respect to the beamline (process independent)
- Determine shape of |d₀| in 33 kinematic bins ($p_{\rm T}^{\mu}, |\eta^{\mu}|$) from Data using $Z \to \mu \mu$ selection
- Subtract remaining backgrounds estimated in MC
- Use shapes as prompt muon templates in signal region
- Systematic uncertainty due to application of $|d_0|$ shape from Z boson decays to $t\bar{t}$ signal region:
 - Estimated by ratio of |d_0| between $t ar{t}$ and $Z
 ightarrow \mu \mu$
 - Rescale Data by applying ratio to calculate systematic uncertainty (done separately for core and tail of |d₀| distribution)

Muons from *b*-/*c*-hadron decays

- b- and c-hadrons decaying into muons constitute largest background at large |d₀|
- Estimate normalisation in same sign (SS) control region:
 - Shape of $|d_0|$ in SS region taken from MC
 - Subtract prompt contribution ($t\bar{t} + V$) from p_T > 30 GeV region
 - Apply Data/MC ratio in SS region to signal region
- Modelling differences between SS and OS taken from MC
- Good Data/MC agreement gives confidence that the distributions are well modelled in signal region
- Uncertainties arising from limited statistics of SS region, MC modelling and p_T threshold for prompt contribution

Remaining Z boson background in di-muon channel

- Although Z veto is applied in di-muon channel, residual contribution from Z+2b-tagged jets is left
- Estimate its normalisation from Data by removing Z veto
- Fit $m_{\mu\mu}$ distribution between 50 GeV and 140 GeV with convolution of Breit-Wigner and Gaussian for $Z \rightarrow \mu\mu$ and 3rd-order Chebychev polynomial for background
- ▶ Normalisation factor: 1.36 ± 0.01
- Use other fit functions to estimate systematic uncertainty

Statistical interpretation

- For both channels (tag electron/muon), perform 2D profile likelihood fit in muon
 - |d₀| : [0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15, 0.5] mm
 - p_T : [5, 10, 20, 250] GeV
- Freely floating parameters:
 - $\mathcal{BR}(W \to \tau \nu) / \mathcal{BR}(W \to \mu \nu)$
 - Scaling factor for top processes (applied to both prompt muons and leptonic tau decays)
- Many uncertainties are correlated between prompt muons and leptonic tau decays
- Mostly cancel out for probe muons
- Observe excellent Data/MC agreement in each signal region bin

Events / 0.01

Pred.

Data

10⁵

 10^3

10²

ld^µl [mm]

Systematic uncertainties

- Uncertainty of measurement dominated by systematic uncertainty
- Leading one is the extrapolation uncertainty on the prompt $|d_0|$ templates
- Theoretical modelling uncertainties (such as parton shower or scale variations)
- Hadron to muon decay background normalisation in SS region, i.e. due to MC generator used in estimate
- Muon isolation requirements efficiency and low-p_T muon reconstruction efficiency

Source	Impact on $R(\tau/\mu)$
Prompt d_0^{μ} templates	0.0038
$\mu_{(prompt)}$ and $\mu_{(\tau \to \mu)}$ parton shower variations	0.0036
Muon isolation efficiency	0.0033
Muon identification and reconstruction	0.0030
$\mu_{(had.)}$ normalisation	0.0028
$t\bar{t}$ scale and matching variations	0.0027
Top $p_{\rm T}$ spectum variation	0.0026
$\mu_{(had.)}$ parton shower variations	0.0021
Monte Carlo statistics	0.0018
Pile-up	0.0017
$\mu_{(\tau \to \mu)}$ and $\mu_{(had.)} d_0^{\mu}$ shape	0.0017
Other detector systematic uncertainties	0.0016
Z+jet normalisation	0.0009
Other sources	0.0004
$B(au o \mu u_{ au} u_{\mu})$	0.0023
Total systematic uncertainty	0.0109
Data statistics	0.0072
Total	0.013

arXiv.2007 14040

Lepton flavour universality - Results

- The measured value of $\mathcal{BR}(W \to \tau \nu)/\mathcal{BR}(W \to \mu \nu)$ is: 0.992 ± 0.013 [± 0.007(stat) ± 0.011(syst)]
- Very good agreement with SM expectation
- Almost twice the precision of the combination of the LEP results
- Most precise measurement to date

Flavour-changing neutral currents

- Flavour-changing neutral currents (FCNCs) are forbidden at tree level in the Standard Model
- Strongly suppressed at higher orders via the GIM mechanism

Flavour-changing neutral currents

- Flavour-changing neutral currents (FCNCs) are forbidden at tree level in the Standard Model
- Strongly suppressed at higher orders via the GIM mechanism
- Several extensions to the SM predict processes involving FCNCs: R-parity violating SUSY, 2HDM, composite Higgs models, warped extra dimensions models
- Significantly larger probability to observe them in LHC collisions

Flavour-changing neutral currents

- Flavour-changing neutral currents (FCNCs) are forbidden at tree level in the Standard Model
- Strongly suppressed at higher orders via the GIM mechanism
- Several extensions to the SM predict processes involving FCNCs: R-parity violating SUSY, 2HDM, composite Higgs models, warped extra dimensions models
- Significantly larger probability to observe them in LHC collisions
- Many models predict the branching ratios of top quark decays via FCNC to be significantly larger
- Will present 2 searches for FCNCs involving top quarks

Final states with a top quark and a photon

- Analysis focusses on models with FCNC: $u/c \rightarrow t + \gamma$
- Can occur in production or decay of top quarks
- In both cases, one photon and one top quark signature
- Only considering leptonic top quark decay
- Require exactly 1 photon, lepton and *b*-tagged jet and $E_{\rm T}^{\rm miss}$
- Consider models with left-handed (LH) and righthanded (RH) couplings
- Apply neural network (NN) trained on kinematic properties of photon/lepton/jet and $E_{\rm T}^{\rm miss}$
- Separate trainings for LH/RH and u/c quark coupling

...........

u/c

Background estimation

- Dominating backgrounds are $W+\gamma+$ jets and $Z+\gamma+{\rm jets}$
- Estimate normalisation from Data in control regions
 - W: require a non-b-tagged jet and $m_{\ell\gamma}$ outside the Z peak to suppress Z+jets
 - Z: require 2 leptons of same flavour and opposite charge, no additional requirements on jets or $E_{\rm T}^{\rm miss}$
- Dedicated estimates from Data for number of electrons/ hadrons misidentified as photons
 - Electrons: measured in Z boson decays
 - Photons: modified photon criteria with respect to signal region

Results

- Perform simultaneous binned profile likelihood fit to the NN output
- No significant FCNC contributions are observed
- Limits on the effective coupling parameters are calculated
- Can be translated into limits on the production cross section and branching ratios

RH

 $tc\gamma$

 $\mathcal{B}(t \to q\gamma) [10^{-5}]$

18

 28^{+12}

FCNC interaction between Higgs boson, top and light quark

- Since Higgs boson is lighter than the top quark, FCNC $t \rightarrow H + q$ decays become possible
- Their branching ratio is largely enhanced by some beyond SM scenarios, i.e. in the $t \to H + c\,\, {\rm decay}$
- In $t\overline{t}$ production, expect one top quark decaying into b+W and the other one into $t \to H + q$

- Since largest branching fraction of Higgs boson is into $b\bar{b}$ and $\tau^+\tau^-$, looking for $tqH(b\bar{b})$ and $tqH(\tau^+\tau^-)$ final states
- Can be combined with searches with $H\to ZZ^*, H\to WW^*$ and $H\to \gamma\gamma\,$ decays (not covered in this talk)
- Looking for 1(0) lepton and at least 3 jets in $b\bar{b}$ / $au_{
 m lep} au_{
 m had}$ ($au_{
 m had} au_{
 m had}$) channel

$t \rightarrow H + q$ search strategy

- Main background after preselection: $t\bar{t}$
- All backgrounds involving prompt leptons in decays are estimated from MC
- $tqH(b\bar{b})$ final state:
- Multijet background estimated in matrix method
- Require at least 2 b-tagged jets
- Categorise in regions with different (b-tag) jet multiplicities
- Use likelihood discriminant based four-momentum vectors of all final-state particles (including *b*-tagging information)

$t \rightarrow H + q$ search strategy

- Main background after preselection: $tar{t}$
- All backgrounds involving prompt leptons in decays are estimated from MC
- $tqH(b\bar{b})$ final state:
- Multijet background estimated in matrix method
- Require at least 2 b-tagged jets
- Categorise in regions with different (b-tag) jet multiplicities
- Use likelihood discriminant based four-momentum vectors of all final-state particles (including *b*-tagging information)
- $tqH(\tau^+\tau^-)$ final state:
 - Fake $\tau_{had}~$ background estimated from Data via loosened $\tau_{had}~$ requirement or flipped charge
 - Use boosted decision tree trained on invariant masses of combination of decay products, p_T of leptons, momentum fractions carried by the visible decay products of the taus

$t \rightarrow H + q$ results

- For both final states, use binned likelihood fit on all final discriminant distributions across all analysis regions
- No significant excess above SM expectation found
- Set limits on branching rations to u and c quarks
- Combine with searches for $H \to ZZ^*$, $H \to WW^*$ and $H \to \gamma\gamma$ decays

Summary

- Presented measurement of $\mathcal{BR}(W \to \tau \nu) / \mathcal{BR}(W \to \mu \nu)$
- Perfect agreement with SM expectation
- Improved LEP precision by almost a factor of 2
- Shown 2 searches for FCNC in top quark final states
- Targeting a variety of beyond SM models
- FCNCs from top quark to light quark involving photon or Higgs boson
- Key ingredient is background suppression
- Usage of machine learning techniques
- No sign for FCNCs involving top quarks found

ATL-PHYS-PUB-2019-038

Backup

Lepton flavour universality in $t\overline{t}$ decays

Cross checks have been performed separating by probe charge and tag flavour
 Reasonable agreement observed

Nicolas Köhler - Measurement of LFU and searches for FCNCs

Lepton flavour universality in $t\overline{t}$ decays

Pre-Fit distributions

arXiv:2007.14040

Lepton flavour universality in $t\overline{t}$ decays

Post-Fit distributions

arXiv:2007.14040

Nicolas Köhler - Measurement of LFU and searches for FCNCs

Systematic uncertainties

- Uncertainty of measurement dominated by systematic uncertainty
- Leading one is the extrapolation uncertainty on the prompt |d0| templates
- Theoretical modelling uncertainties (such as parton shower or scale variations)
- Hadron to muon decay background normalisation in SS region, i.e. MC modelling
- Muon isolation requirements efficiency and low-p_T muon reconstruction efficiency

Muons from *b*-/*c*-hadron decays

- b- and c-hadrons decaying into muons constitute largest background at large |d₀|
- Estimate normalisation in same sign (SS) control region:
 - Shape of $\left| d_{0} \right|$ in SS region taken from MC
 - Subtract prompt contribution ($t\bar{t} + V$) from p_T > 30 GeV region
 - Apply Data/MC ratio in SS region to signal region
- Modelling differences between SS and OS taken from MC
- Good Data/MC agreement gives confidence that the distributions are well modelled in signal region
- Uncertainties arising from limited statistics of SS region, MC modelling and p_T threshold for prompt contribution

FCNC interaction between Z boson, top and light quark

Model:	SM	QS	2HDM	FC 2HDM	MSSM	RPV SUSY	RS	EMF
$\mathcal{B}(t \to qZ)$:	10^{-14}	10^{-4}	10^{-6}	10^{-10}	10^{-7}	10^{-6}	10^{-5}	10^{-6}

- Some extensions of the SM significantly increase the branching fraction of the top quark into Z boson and a light quark
- Looking for one top quark decay into b+W and one into Z+q
- Final states with 3 leptons and 2 jets (1*b*-tagged jet) and $E_{\mathrm{T}}^{\mathrm{miss}}$
- Reconstruct Z boson candidate from leptons with invariant mass closest to Z mass
- Determine longitudinal component of the neutrino momentum from decay particles by minimising

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{a}\ell_{b}}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^{2}}{\sigma_{t_{\text{FCNC}}}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^{2}}{\sigma_{t_{\text{SM}}}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{\text{reco}} - m_{W}\right)^{2}}{\sigma_{W}^{2}}$$

$t \to Z + q \,\, {\rm backgrounds}$

- Main backgrounds: di-boson, $t\overline{t} + Z$ and t + Z
- Estimated from Data in control regions:
 - $t\overline{t} + Z$: require 3 leptons and 2 *b*-tagged jets
 - WZ: 3 leptons, $E_{\mathrm{T}}^{\mathrm{miss}}$ > 40 GeV, $m_{\mathrm{T}}^{\ell\nu}$ > 50 GeV
 - ZZ: 4 leptons, at least 1 (not b-tagged) jet
- Backgrounds from events containing at least one non-prompt lepton estimated by semi-datadriven technique
 - Improves Data/MC agreement significantly

$t \rightarrow Z + q$ results

- Perform maximum-likelihood fit in χ^2 and lepton p_T
- Main uncertainties: theoretical normalisation uncertainties and uncertainties in the modelling of background processes in the simulation
- No evidence of a FCNC signal found
- Upper limits on branching rations can be converted into upper limits on EFT operators contributing to the FCNC decay

	$\mathcal{D}(\mathcal{L},\mathcal{T})$	\mathbf{n}	$ C_{uB}^{(31)} $	0.25	0.30
	$\mathcal{B}(t \to uZ)$	$\mathcal{B}(t \to cZ)$	(81)		
Observed	$1.7 imes 10^{-4}$	2.4×10^{-4}	$ C_{uW}^{(31)} $	0.25	0.30
Expected -1σ	1.7×10^{-4}	2.2×10^{-4}	$ C^{(32)} $	0.30	0.34
Expected	2.4×10^{-4}	3.2×10^{-4}		0.00	0.01
Expected $+1\sigma$	$3.4 imes 10^{-4}$	$4.6 imes 10^{-4}$	$ C_{uW}^{(32)} $	0.30	0.34

Observed

Operator

Expected