



Measurement of four-topquarks production with the ATLAS Detector



Nedaa-Alexandra Asbah
on behalf of the ATLAS Collaboration

ICHEP 30th of July 2020

#### **Predictions for 4tops**

- Very complicated process
  - o at LO 72 gg+12 qq' initiated diagrams
- Sensitive to top-Yukawa coupling (y<sub>t</sub>)
  - non-SM value of y<sub>t</sub> can change dramatically the production via an off-shell Higgs
- Leading:  $O(\alpha_S^4)$  Sub-Leading:  $O(\alpha_S^2y_t^4)$ ,  $O(\alpha_S^2\alpha^2)$

Four-fermion contact interaction

2HDM scalar/pseudoscalar

H/A

g  $\sim$   $\sim$   $\sim$   $\sim$   $\sim$   $\sim$ 

- Extremely high energy scale production makes it naturally sensitive to many BSM models
  - EFTs, including four-fermion contact interaction
  - Higgs physics: 2HDM scalar/ pseudoscalar
  - SUSY: gluinos, sgluons
  - New particles coupling to top quark



# **Production of 4tops**

- Very tiny cross section in the SM
  - $\circ$   $\sigma$  NLO(tttt) = 11.97 fb at NLO QCD + NLO QED at 13 TeV arXiv:1611.05032 [hep-ph]
- O(100M) tt events
- O(1k) tt tt events



# **Signatures**

- The t→Wb decay means the detector signature is defined by:
  - The presence of several (up to 4) b-quarks,
  - The decays of the W bosons.





- Channels are split according to:
  - 1ℓ/2ℓOS: 1ℓ (42%) / 2ℓOS (14%) Phys. Rev. D99 (2019) 052009
    - Dominant branching fraction, but large irreducible background from tt+jets, tt+heavy flavour jets
    - Uses 36 fb<sup>-1</sup> of Run 2 dataset
  - **2ℓSS/3ℓ: 2ℓSS** (7%) / **3ℓ** (5%) ATLAS-CONF-2020-013
    - Low branching fraction, but small background (ttW, ttZ, non-prompt leptons, charge misidentification)
    - Most sensitive channel

○ Uses 139 fb<sup>-1</sup> of Run 2 dataset





#### 18/28OS Channel: Analysis Strategy

- ATLAS result : Phys. Rev. D99 (2019) 052009
- Uses **36 fb<sup>-1</sup>** of Run 2 dataset
- Event Selection:
  - 1 e/μ or 2 e/μ
  - $N_{jets} \ge 5$  (1L),  $N_{jets} \ge 4$  (2L)
  - N<sub>b</sub> ≥2

| Channel       | 1L<br>(expected 10 jets and 4 b-jets)                                      | OS<br>(expect 8 jets and 4 b-<br>jets)                    |
|---------------|----------------------------------------------------------------------------|-----------------------------------------------------------|
| Pre-selection | $E^{\text{miss}} > 20 \text{ GeV}$ $E^{\text{miss}} + m^W > 60 \text{GeV}$ | $m_{ll} > 30 \text{ GeV}$ $ m_{ll} - 91  > 9 \text{ GeV}$ |

# 18/28OS Channel: Analysis Strategy

- Events are categorized according to number of R=0.4 jets, b-tagged jets, and large radius jets (R=1.0 reclustered)
- tt-bb- background in signal regions estimated using data-driven method
  - extract effective tagging efficiency from low N<sub>jets</sub>, apply to low N<sub>tags</sub> source regions to promote events to higher N<sub>tags</sub> SRs



# 18/28OS Channel: Signal Extraction

• Simultaneous fit to the H⊤ distribution in multiple signal regions (total of 20 regions: 12 regions in the single-lepton channel and 8 regions in the dilepton channel)

$$H_T^{had} = \sum_{jets}^{jets} P_T$$

Non-tt

Example in the single lepton channel in 9 jets & ≥ 10 jets



#### 1ℓ/2ℓOS Channel: Results

- No significant excess of events above the SM background prediction, excluding the SM tttt production is found
- In the case of tttt production with SM kinematics, an observed (expected) 95% C.L. upper limit on the production cross section of 47 fb (33 fb) is obtained, corresponding to an upper limit on σ(tttt) relative to the SM prediction of 5.1 (3.6).
- The SM fitted signal strength  $\mu$ , after combination of the single-lepton and dilepton channels, is measured to be  $1.7^{+1.9}_{-1.7}$
- The systematic uncertainties related to the ttbar model are the dominant ones
- Stay tuned for the updated results using the full run 2 dataset



Phys. Rev. D99 (2019) 052009

# 2ℓSS/3ℓ Channel: Analysis Strategy

• New ATLAS result: ATLAS-CONF-2020-013

NEW!

- Uses full Run 2 dataset: 139 fb-1
- Targets clean leptonic signatures where at least two of the W bosons decay leptonically
- Selection requirements:
  - 2 same-sign leptons or 3 leptons
     (ℓ=e,µ)
  - o ≥ 6 jets (p<sub>T</sub> > 25 GeV)
  - ≥ 2 b-tagged jets (77% efficiency working point)

• H<sub>T</sub> > 500 GeV;  
leptons jets  

$$H_T = \sum_{T} P_T + \sum_{T} P_T$$



#### 2ℓSS/3ℓ Channel: Backgrounds

• Reducible backgrounds:

Fake/non-prompt leptons & charge misidentified leptons



- electrons (muons) from heavy-flavour decay, HFe(μ)
- electrons from γ conversion in detector, Mat. Conv. (6.8%)
- o a virtual photon leading to an e+e- pair, Low Mee
- Charge mis-assignment, Q mis-ID (5.8%):
  - Relevant for the 2\(\ext{SS}\) channel
  - Charge of electron is mis-measured due to:
    - Bremsstrahlung photon emission followed by its conversion
    - Mis-measured track curvature



# 2ℓSS/3ℓ Channel: Backgrounds

- Irreducible backgrounds: Leptons from W, Z or leptonic τ decays
  - ttW (36.7%), ttZ (17.3%), and ttH (13.7%)
    - Processes with SS and multi-lepton+jets signatures (with additional light and b-tagged jets)
  - Smaller backgrounds: (10% Others) + ttt

Diboson, triboson, VH+jets, ttWW, tWZ, tZq

 Evaluated using MC normalised to SM cross sections, except ttW which is floating in the fit



#### 2ℓSS/3ℓ Channel: Template fit

- Template Method is used to determine the major backgrounds
  - Background shapes are estimated from MC
  - Normalisation is obtained from the fit
  - Dedicated control regions are defined to constrain normalisation factors and the modeling is validated in the validation regions



- Analysis Regions:
- 1 Signal region
- 4 Control regions
  - Each region has a dominating component or a variable with discriminating power between components (ttW, HFe(μ), Material Conversion and Low Mee )

| Region      | Channel                                 | $N_{j}$         | $N_b$ | Other requirements                                        | Fitted variable                |
|-------------|-----------------------------------------|-----------------|-------|-----------------------------------------------------------|--------------------------------|
| CRttbarCO2l | $e^{\pm}e^{\pm}  e^{\pm}\mu^{\pm}$      | $4 \le N_j < 6$ | ≥ 1   | $M_{ee} @ CV \in [0, 0.1 \text{ GeV}]$                    | $M_{ee}$ @PV                   |
|             |                                         | -               |       | $200 < H_{\rm T} < 500 \; {\rm GeV}$                      |                                |
| CR1b3Le     | eee    eeµ                              | -               | = 1   | $100 < H_{\rm T} < 250 \; {\rm GeV}$                      | counting                       |
| CR1b3Lm     | еµµ    µµµ                              | -               | = 1   | $100 < H_{\rm T} < 250 \; {\rm GeV}$                      | counting                       |
| CRttW2l     | $e^{\pm}\mu^{\pm}  \mu^{\pm}\mu^{\pm} $ | ≥ 4             | ≥ 2   | $M_{ee} @CV \notin [0, 0.1 \text{ GeV}],  \eta(e)  < 1.5$ | $\Sigma p_{\mathrm{T}}^{\ell}$ |
|             |                                         |                 |       | for $N_b = 2$ , $H_T < 500$ GeV or $N_j < 6$              | _                              |
|             |                                         |                 |       | for $N_b \ge 3$ , $H_T < 500$ GeV                         |                                |

# 2ℓSS/3ℓ Channel: Template fit

#### Results of the Template Fit

Normalization factors obtained from the fit:

| Parameter | $NF_{t\bar{t}W}$ | NF <sub>Mat. Conv.</sub> | $NF_{Low\ M_{ee}}$ | NF <sub>HF</sub> e | $NF_{HF} \mu$ |
|-----------|------------------|--------------------------|--------------------|--------------------|---------------|
| Value     | $1.6 \pm 0.3$    | $1.6 \pm 0.5$            | $0.9 \pm 0.4$      | $0.8 \pm 0.4$      | $1.0 \pm 0.4$ |
|           |                  |                          |                    |                    |               |

- The factors are compatible with unity except for NF<sub>ttW</sub> and NF<sub>Mat. Conv.</sub>
- The high NF<sub>ttW</sub> is compatible with previous ATLAS ttH(H→multi-leptons) result [ATLAS-CONF-2019-045]
- More details in the next slides

# 2ℓSS/3ℓ Channel: Template fit

#### ttW Validation Regions

- Use validation region to check ttW+jets normalisation and modeling
- Uncertainties:
  - Additional jets: Uncertainty of 125% (300%) is assigned to events with =7
    (≥8) jets
    - Based on VR mismodeling
  - Additional b-jets: Uncertainty of 50% each is assigned to events with 3 or ≥4 truth b-jets
    - Based on tt+HF measurement and data/MC agreement in tty

#### ttW Validation Region: ≥4jets ≥2b-tagged



ATLAS-CONF-2020-013

# 2ℓSS/3ℓ Channel: Signal Optimization

- Signal is separated from background based on a multivariate discriminant built in the signal region by combining input observables into a BDT:
- 12 observables are selected based on their discrimination power and the requirement of good modelling
  - o b-tagging information: Sum of the pseudo-continuous b-tagging discriminant score
  - Lepton and jet kinematics
  - BDT training is performed inclusively in lepton flavour and multiplicity for events in the SR



# 2ℓSS/3ℓ Channel: Systematics

- The dominant systematics uncertainties on the signal strength are:
- The theoretical uncertainty on signal
- Data statistics
- Modelling of ttW+jets
- Uncertainty on ttt production
  - 10% of tttt cross sections and estimated from MC, but similar BDT shape
- Instrumental
  - B-tagging: Uncertainties on the btagging efficiencies, mainly the light mistagging rate
  - Jet Energy Scale: Uncertainties related to pile-up subtraction and the modelling of additional jets in the di-jet balance analysis
- Non-prompt lepton normalisation and modelling
  - Shape uncertainty derived from data/ MC (dis)agreement in a fake-enriched region

| Uncertainty source                                         |       | $\mu$ |
|------------------------------------------------------------|-------|-------|
| Signal modelling                                           |       |       |
| tttt cross section                                         | +0.56 | -0.31 |
| tttt modelling                                             | +0.15 | -0.09 |
| Background modelling                                       |       |       |
| $t\bar{t}W$ modelling                                      | +0.26 | -0.27 |
| ttt modeling                                               | +0.10 | -0.07 |
| Non-prompt leptons modeling                                | +0.05 | -0.04 |
| $t\bar{t}H$ modelling                                      | +0.04 | -0.01 |
| $t\bar{t}Z$ modelling                                      | +0.02 | -0.04 |
| Charge misassignment                                       | +0.01 | -0.02 |
| Instrumental                                               |       |       |
| Jet uncertainties                                          | +0.12 | -0.08 |
| Jet flavour tagging (light-jets)                           | +0.11 | -0.06 |
| Simulation sample size                                     | +0.06 | -0.06 |
| Luminosity                                                 | +0.05 | -0.03 |
| Jet flavour tagging (b-jets)                               | +0.04 | -0.02 |
| Other experimental uncertainties                           | +0.03 | -0.01 |
| Jet flavour tagging (c-jets)                               | +0.03 | -0.01 |
| Total systematic uncertainty                               | +0.69 | -0.46 |
| Statistical                                                | +0.42 | -0.39 |
| Non-prompt leptons normalisation(HF, material conversions) | +0.05 | -0.04 |
| $t\bar{t}W$ normalisation                                  | +0.04 | -0.04 |
| Total uncertainty                                          | +0.82 | -0.62 |

ATLAS-CONF-2020-013



- The tttt production cross section is measured via a binned likelihood fit of the BDT score distribution in the signal region and of the discriminating variables in the four control regions
- The measured tttt signal strength is found to be:

$$\mu = 2.0[^{+0.4}_{-0.4}(stat) \ ^{+0.7}_{-0.5}(syst)] = 2.0^{+0.8}_{-0.6}$$

• Cross section:

$$\sigma(t\bar{t}t\bar{t}) = 24^{+5}_{-5}(stat) \,\,_{-4}^{+5}(syst) \,fb = 24^{+7}_{-6} \,fb$$

Compared to the theoretical predication of

$$\sigma(t\bar{t}t\bar{t}) = 12 \pm 2 fb$$

- Strong 4.3σ (2.4σ expected) evidence
  - Consistent to 1.7σ with the Standard Model
- Several tests were done to check the stability & consistency of the result





Stay tuned for the full run 2 combination

SS eµ 7 jets 4 b-jets H<sub>T</sub> = 723 GeV



Thank you!

# **BACKUP SLIDES**



# 18/28OS Channel: Systematic Uncertainties

- The post-fit impact of the largest sources of systematic uncertainty on the signal strength μ is shown
- The systematic uncertainties are the dominant ones:
  - The largest contributions are due to the uncertainty associated with the choice of tt+jets parton shower and hadronization model and the NLO generators (tt+jets modeling)
  - The second largest contribution is due to the large statistical uncertainties associated with the background prediction

# Breakdown of the contributions to the uncertainties on $\mu$

|          | Uncertainty source                        | $\pm\Delta\mu$ |        |
|----------|-------------------------------------------|----------------|--------|
| <b>→</b> | $t\bar{t}$ +jets modeling                 | +1.2           | -0.96  |
| <b>-</b> | Background-model statistical uncertainty  | +0.91          | -0.85  |
|          | Jet energy scale and resolution, jet mass | +0.38          | -0.16  |
|          | Other background modeling                 | +0.26          | -0.20  |
|          | b-tagging efficiency and mis-tag rates    | +0.33          | -0.10  |
|          | JVT, pileup modeling                      | +0.18          | -0.073 |
|          | $t\bar{t} + H/V$ modeling                 | +0.053         | -0.055 |
|          | Luminosity                                | +0.050         | -0.026 |
| Ī        | Total systematic uncertainty              | +1.6           | -1.4   |
|          | Total statistical uncertainty             | +1.1           | -1.0   |
|          | Total uncertainty                         | +1.9           | -1.7   |



#### 2ℓSS/3ℓ Channel: Backgrounds

• Reducible backgrounds: Fake/non-prompt leptons & charge misidentified leptons

- Main fake/non-prompt backgrounds are:
  - electrons (muons) from heavy-flavour decay, HFe(μ)
  - electrons from y conversion in detector, Mat. Conv.
  - a virtual photon leading to an e+e- pair, Low Mee
- Charge mis-assignment, Q mis-ID:
  - Relevant for the 2\(\ell\)SS channel
  - Charge of electron is mis-measured due to:
    - Bremsstrahlung photon emission followed by its conversion
    - Mis-measured track curvature





# 2ℓSS/3ℓ Channel: Background

#### Control Regions: CRttbarCO2I

- Enriched in Mat. Conv. and Low Mee events.
- Look at the invariant mass between the electron track and its closest track





| ICHEP | Nedaa Alexandra Asbah, 30.07.2020

#### 2ℓSS/3ℓ Channel: Background

#### Control Regions: CR1b3le & CR1b3lm

- Enriched in background events with leptons from heavy-flavour
- Requiring 3 leptons: eee and eeμ (μμμ and μμe) for CR1b3le (CR1b3lm),
- Exactly one b-tagged jet & 100 < H<sub>T</sub> < 250 GeV</li>



#### 2ℓSS/3ℓ Channel: Background

#### Control Regions: CRttW2I

- Enriched in ttW+jets events
- Selecting eμ and μμ events with at least four jets and two b-jets which are neither in other CRs nor in the SR.
- $\circ$  Looked at the sum of the lepton  $p_T = \sum p_T^l$  which gives a good discrimination from the other backgrounds in the template fit





ICHEP | Nedaa Alexandra Asbah, 30.07.2020

Good Data/MC agreement seen in the input variables to the BDT





Good Data/MC
agreement is also seen
in the input variables to
the BDT when requiring
BDT > 0



Sum of b-tag scores

 $min(\Delta R(I,I))$ 

- The stability of the result is checked in several ways
- Using a H<sub>T</sub>-based fit instead of the BDT
- Splitting the signal region in to 2\langleSS and 3\langle events
- Using only positively/negatively charged
   SS lepton pairs
- Fitting different data-taking years

All the above tests showed compatible results



ATLAS-CONF-2020-013