

Measurement of top-quark properties with the ATLAS detector at the LHC

Kentaro Kawade on behalf of the ATLAS collaboration

Interests in the Top quark physics

- Top quark?
 - Most massive known elementary particle so far discovered
 - With a mass ~ I73 GeV
 - Strong coupling to Higgs boson
 - Many BSM particles strongly couple with top quark
- Studying top quark
 - Precision test of pQCD, EWK
 - Many BSM searches from top production, properties and decay
 - Important background for a lot of LHC searches
- LHC is a Top-Factory
 - ->100,000,000 $t\bar{t}$ pairs in LHC-Run2

Outline

- Focus on newer results
 - Spin correlations between t and \bar{t} quarks
 - 1903.07570 Accepted by EPJC
 - Charge asymmetry
 - ATLAS-CONF-2019-026
 - Its decay width
 - ATLAS-CONF-2019-038
 - Lepton universality in leptonic W decay
 - ATLAS-CONF-2020-014
- All public results can be found [<u>Link</u>]

$tar{t}$ spin correlations in the $e\mu$ channel

- top-quark pairs should be produced without polarization \rightarrow while spin of t and \bar{t} are correlated
- The lifetime of the top quark
 - Shorter than the timescale for hadronization (10^{-23} s)
 - Shorter than the spin decorrelation time (10⁻²¹s)
 - \Rightarrow the t and \bar{t} quarks spin information is transferred directly to its decay products
 - \rightarrow Charged leptons carry full spin information $(a_{\ell} \sim 1)$
- Simple $e\mu$ final state is used to this measurement
 - Angle between the leptons is sensitive to spin correlations
- Results are unfolded to both the parton-level and also the particle-level

Analysis overview: $t\bar{t}$ spin correlations

- inclusive selection
 - exactly one electron and one muon of opposite charge
 - at least two jets and at least one of jets must be b-tagged
- reconstructed selections
 - at least two b-tagged jets with tighter b-tag requirement

Process	Inclusive selection $\geq 1 b$ -tag			Reconstructed selection $\geq 2 b$ -tags		
$t\bar{t}$	165 000	±	5000	75 000	±	4000
tW	8900	±	1400	1550	±	170
$t\bar{t}V$ and others	670	±	60	233	±	22
Diboson	580	\pm	60	15.1	±	2.8
$Z/\gamma^* o au^+ au^-$	420	\pm	70	26	±	17
Fake Lepton	1800	±	700	630	±	250
Expected	177 000	±	6000	78 000	±	4000
Observed	177 113			75 885		

To improve reconstruction (Neutrino Weighting)

purity 93%, 96%

Results: $t\bar{t}$ spin correlations

 The observed spin correlation is slightly higher than the generator predictions

$$x_i = f_{\text{SM}} \cdot x_{\text{spin}, i} + (1 - f_{\text{SM}}) \cdot x_{\text{nospin}, i}$$

 $x_{\text{spin/nospin}}$; cross-sections under the SM spin/nospin hypothesis

- $f_{
 m SM}$ increases as a function of $m_{tar t}$
 - Due to larger uncertainties, none of the results deviate substantially from the SM expectation

Region	$f_{\rm SM} \pm ({\rm stat., syst., theory})$	Significance (excl. theory)	
Inclusive	$1.249 \pm 0.024 \pm 0.061 ^{+0.067}_{-0.090}$	2.2 (3.8)	
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.12 \pm 0.04 ^{+0.12}_{-0.13} ^{+0.06}_{-0.07}$	0.78 (0.87)	
$450 \le m_{t\bar{t}} < 550 \text{ GeV}$	$1.18 \pm 0.08 ^{~+0.13}_{~-0.14} ^{~+0.13}_{~-0.15}$	0.84 (1.1)	
$550 \le m_{t\bar{t}} < 800 \text{ GeV}$	$1.65 \pm 0.19 ^{~+0.31}_{~-0.41} ^{~+0.26}_{~-0.33}$	1.2 (1.4)	
$m_{t\bar{t}} \ge 800 \text{ GeV}$	$2.2 \pm 0.9 {}^{+2.5}_{-1.7} {}^{+1.2}_{-1.5}$	0.49 (0.61)	

Parton level $\Delta \phi(I^{+}, \bar{I})/\pi$ [rad/ π]

Parton level $\Delta \phi(||^{+},||^{-})/\pi$ [rad/ π]

V.S. theories: $t\bar{t}$ spin correlations

Compare with various SM predictions

- Higher order calculations appear to reduce the tension
 - but still do not agree fully
- NLO in the strong and weak gauge couplings agrees better with the data
 - but large scale uncertainties
- NLO expansion with $\mu_R = \mu_F = m_t$ leads to comparable results
 - again with significant scale uncertainties
- NNLO prediction using the same expansion does not agree

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

(0)

Parton level $\Delta \phi(I^{\dagger}, \bar{\Gamma})/\pi$ [rad/ π]

SUSY interpretation: $t\bar{t}$ spin correlations

- A search is performed for stop pair decaying into SM top quarks and light neutralinos
- Top squarks with masses between 170 and 230 GeV are excluded for most kinematically allowed neutralino mass

$t\bar{t}$ charge asymmetry

• Interference between $t\bar{t}$ production processes causes asymmetry in t and \bar{t} direction in the hadron colliders

- This measurement is essential to test QCD higher order effect
- BSM physics can lead to enhancements in CA
- This asymmetry expected to be tiny in the LHC
 - → this makes the measurement challenging

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}, \qquad \Delta|y| = |y_t| - |y_{\bar{t}}|$$

Analysis overview: $t\bar{t}$ charge asymmetry

- The measurement is made with a single lepton final state
 - both the resolved and boosted topologies
- Combined $A_{\rm C}$ are measured inclusively, and differentially as a function of the $m_{t\bar t}$ and $\beta_{Z,t\bar t}$
- A Bayesian unfolding procedure is applied
 - Systematic uncertainties are profiled as nuisance parameters

$$\mathcal{L}(\boldsymbol{D}|\boldsymbol{T}) = \int \mathcal{L}(\boldsymbol{D}|\boldsymbol{T},\boldsymbol{\theta}) \cdot \mathcal{N}(\boldsymbol{\theta}) d\boldsymbol{\theta},$$

Results: $t\bar{t}$ charge asymmetry

- Measured inclusive A_c : 0.60% \pm 0.15%
 - in agreement with the NNLO QCD + NLO EW predictions
 - -4σ from zero
 - ⇒ First evidence for charge asymmetry in pp collisions
- Also measured as a function of $m_{tar{t}}$ and $eta_{Z,tar{t}}$
 - consistent with the Standard Model predictions

EFT interpretation: $t\bar{t}$ charge asymmetry

- The inclusive and $m_{t\bar{t}}$ measurements are interpreted in the EFT framework
- Derived limits on the linear combination of Wilson coefficients for dimension-six operators

$$C^-/\Lambda^2 = -4g_s^2/m_A^2.$$

 The measured data provide considerably tighter bounds than the combination of previous ATLAS and CMS measurements

C [TeV-2]

top-quark decay width

- Top quark decay width is one of the fundamental properties
- Due to its large mass the decay width is expected to be very large
 - most precise theoretical predictions NNLO $\Gamma_t = 1.322~{\rm GeV} \ @ \ m_t = 172.5~{\rm GeV}$
- Possible deviations from SM due to
 - top quarks decaying into charged Higgs bosons
 - via Flavor Changing Neutral Current (FCNC) processes
 - models modifying CKM matrix elements like $|V_{th}|$
- Direct approach to measure Γ_t
 - □ less precise than the indirect measurements
 - ✓ less model-dependent

Analysis overview: Decay width

- The analysis focuses on $t\bar{t}$ events in the dilepton decay channel
 - 2 leptons + 2 jet
 - only for SF events Z and DY veto
 - $-E_T^{miss} > 60 \text{ GeV (to eliminate Z-jets)}$
- Reconstruct $m_{lb} \leftarrow$ sensitive to Γ_t
- Profile-likelihood template fit technique
 - Templates with different underlying top-quark decay widths
 - Simultaneous fit in the three channels

	ee	μμ	еμ
$t\bar{t}$ Single top $Z+VV+t\bar{t}X$ Fake leptons	34000±1700	49100±2500	176000±9000
	1150± 60	1570± 80	5300± 260
	230± 120	390± 200	380± 190
	800± 400	41± 20	2100±1100
Total prediction	37000±1800	51100±2500	184000±9000
Data	37926	52166	186951

Result: Decay width

• $\Gamma_t = 1.9 \pm 0.5 \text{ GeV for } m_t = 172.5 \text{ GeV}$

Source	Impact on Γ_t [GeV]
Jet reconstruction	±0.24
Signal and bkg. modelling	± 0.19
MC statistics	± 0.14
Flavour tagging	± 0.13
$E_{\rm T}^{ m miss}$ reconstruction	± 0.09
Pile-up and luminosity	± 0.09
Electron reconstruction	± 0.07
PDF	± 0.04
$t\bar{t}$ normalisation	± 0.03
Muon reconstruction	± 0.02
Fake-lepton modelling	±0.01

 in agreement with the Standard Model prediction

$W \rightarrow \tau / \mu$ ratio from $t\bar{t}$ events

- The universality of the lepton couplings to the EW gauge boson $g_{\ell}(\ell=e,\mu,\tau)$ is a fundamental axiom of the SM
- Previously $R(\tau/\mu) = \mathrm{BR}(W \to \tau \nu_\tau)/\mathrm{BR}(W \to \mu \nu_\mu)$ has been measured at LEP
 - $-R(\tau/\mu) = 1.070 \pm 0.026$
 - deviates from the SM by 2.7 σ
 - → motivating precise measurement at the LHC
- This analysis measures the branching fraction ratio using dilepton t ar t events
 - gives an excellent sample of W boson
 - $W \to \tau \nu_{\tau} \to \mu \nu_{\mu} \nu_{\tau} \nu_{\tau}$ process is used to measure BR($W \to \tau \nu_{\tau}$) \leftarrow use well know BR($\tau \to \mu \nu_{\mu} \nu_{\tau}$) = 17.39 \pm 0.04%

Analysis detail: W $\rightarrow \tau/\mu$ ratio

- A tag and probe analysis is performed probing whether a muon comes from a prompt decay or via an intermediate tau
 - softer p_T spectrum
 - displacement of the decay vertex \rightarrow |d0|

Backgrounds

- $Z \rightarrow \mu \mu + jets$
 - a fit of di-muon invariant mass distributions is used to normalize this background
- Hadron decay fake muon
 - A same-sign charge selection is used to normalize this background

Results: W $\rightarrow \tau/\mu$ ratio

• A profile likelihood fit is performed to extract $R(\tau/\mu)$ in "3×8 p_T and d₀ bins" for each $e\mu$ and $\mu\mu$ channels

 $R(\tau/\mu) = 0.992 \pm 0.013 [\pm 0.007 \text{ (stat)} \pm 0.011 \text{ (syst)}].$

 The measurement is in good agreement with the SM and more precise than the LEP measurement

Summary

- ATLAS performed various top properties measurements
- Spin Correlations;
 - We are observing some significant tensions between data and theoretical predictions
 - this suggests our limited understanding of top quark production and decay
- TCA;
 - We are now also able to see subtle higherorder effects in top properties
- Top decay width & W-> τ/μ ratio;
 - SM still describe the data very well
- More results are in the pipeline
 - → Stay tuned !!

Parton level $\Delta \phi(l^{+}, \bar{l})/\pi$ [rad/ π]

