Recent tr and single top inclusive cross section results in CMS

ICHEP 2020

Denise Müller on behalf of the CMS Collaboration July 28, 2020

- Top quark production at the LHC
- CMS tī inclusive cross section measurements
 - tī dilepton (ee, eμ, μμ): EPJC 79 (2019) 368
 - tī τ + e/μ: JHEP 02 (2020) 191
- CMS single top inclusive cross section measurements
 - ▶ *t* channel: PLB 800 (2020) 135042
 - ▶ tW-associated: JHEP 10 (2018) 117
- ATLAS+CMS combination Run 1 single top: JHEP 05 (2019) 088

Differential CMS $\ensuremath{t\bar{t}}$ and single top cross section measurements: see talk from Georgios Bakas

Top quark production at the LHC

Dominant: QCD production of $t\bar{t}$ pairs (@13 TeV: \approx 90% gg fusion, \approx 10% q \bar{q} annihilation)

Single top production: probing EWK sector of SM

tī inclusive cross section

EPJC 79 (2019) 368

- Select events with isolated eμ, ee, and μμ of opposite sign
- Categorize events according to multiplicity of jets with $p_T > 30 \text{ GeV}(n_j)$ and multiplicity of b-tagged jets $(n_b) \Rightarrow 28 \text{ event categories}$
- Extract cross section through profile LH ratio (PLR) fit in fiducial region and extrapolation to full phase space

EPJC 79 (2019) 368

- Observables used in fit: *p*_T of additional untagged jet of each event category
- Dominant uncertainties: int. lumi, lepton efficiencies, PDF
- ► With $m_t^{MC} = 172.5 \text{ GeV}$: $\sigma_{t\bar{t}} = 803 \pm 2 \text{ (stat)} \pm 25 \text{ (syst)} \pm 20 \text{ (lumi) pb}$ $\Rightarrow 4.0\% \text{ total unc., precision}$ beyond theory prediction (5.2%)

EPJC 79 (2019) 368

- In addition: fit performed for simultaneous extraction of σ_{tī} and m_t^{MC}, using same event categories of eµ channel as in main measurement
- Fit observable to maximize sensitivity on m_t^{MC} : minimum invariant mass $m_{\ell b}$ 2 b tags 1 add. jet ($e^t \mu^{-1}$) 35.9 fb⁻¹ (13
- Dominant unc.: int. lumi, lepton eff., NLO generator
- $\sigma_{t\bar{t}} = 815 \pm 2 \text{ (stat)} \pm 29 \text{ (syst)} \pm 20 \text{ (lumi) pb}$ $\Rightarrow 4.3\% \text{ total unc.}$
- ▶ m^{MC}_t = 172.33 ± 0.14 (stat)^{+0.66}_{-0.72} (syst) GeV

Dilepton channel EPJC 79 (2019) 368

Use $\sigma_{t\bar{t}}$ result from simultaneous fit of $\sigma_{t\bar{t}}$ and m_t^{MC} to extract m_t and $\alpha_s(m_Z)$ in \overline{MS} scheme with different PDF sets

PDG 2018: $\alpha_{\rm S}(m_{\rm Z}) = 0.1181 \pm 0.0011$

$\tau + {\rm e}/\mu$ channel

JHEP 02 (2020) 191

- Important process for lepton universality check in tt
- Bkg contribution for BSM Higgs searches, e. g. H[±] → τ[±]ν_τ
- Event selection:

1 e/ μ , 1 hadronic τ with OS, \geq 2 jets (\geq 1 b-tagged)

- Define signal and bkg category using kinematic jet properties
 - Jet triplets for each combo of 1 b-tagged and 2 untagged jets
 - Distance parameter

$$D_{
m jjb} = \sqrt{(m_{
m W}-m_{
m jj})^2+(m_{
m t}-m_{
m jjb})^2}$$

 Signal event: D^{min}_{jjb} > 60 GeV OR only 1 untagged jet

$\tau + {\rm e}/\mu ~{\rm channel}$

JHEP 02 (2020) 191

 PLR fit to transverse mass m_T(l, p_T^{miss}) =

> $\sqrt{2|\vec{p}_{T}^{\ell}||\vec{p}_{T}^{miss}|(1 - \cos \Delta \phi)}$ in signal-like and bkg-like event category, separately for $e\tau$ and $\mu\tau$ final state

Main bkg contribution: tt ℓ+jets ⇒ one jet misidentified as τ_h

- Other sources of misidentified τ_h : W+jets, QCD multijet
- Bkgs with genuine $\tau_{\rm h}$: single top tW, DY

 $au + \mathbf{e}/\mu$ channel – Results

JHEP 02 (2020) 191

- Dominant syst. unc.: *τ*_h misidentification, int. lumi, b quark fragmentation
- $\sigma_{t\bar{t}} = 781 \pm 7 \text{ (stat)} \pm 62 \text{ (syst)} \pm 20 \text{ (lumi) pb}$ $\Rightarrow 8.3\% \text{ total unc.}$
- Check for lepton universality using tt dilepton result (EPJC 79 (2019) 368):
 *R*ℓ_{Th}/ℓℓ = 0.973 ± 0.009 (stat) ± 0.066 (syst) ⇒ compatible to unity, lepton universality conserved

Single top inclusive cross section

Direct measurement of $|\textbf{V}_{tb}|$ Probing PDFs via cross section ratio between top quark and top antiquark production

Denise Müller

√s [TeV]

t channel

PLB 800 (2020) 135042

- Most dominant production mode at LHC
- Asymmetric production of top quarks and top antiquarks
 ⇒ cross section ratio R_{t-ch}
 - Sensitive to flavor of initial quarks and to different PDF predictions
 - Reduced systematic uncertainties
- Direct measurement of CKM matrix element |V_{tb}| in production
- Final state: Leptonically decaying W boson and b quark from top quark decay, light quark preferably in forward direction

t channel

PLB 800 (2020) 135042

- Events with 1 isolated e/µ and jets and b-tagged jets with p_T > 40 GeV selected
- Define 3 event categories according to #jets (j) and #b jets (t): 2j1t (signal) and 3j1t, 3j2t (tt bkg)
- Event classification: BDT with 12 variables, trained in 2j1t category
- Most important input variables: Light-quark jet |η|, reconstructed m_t, inv. dijet mass m_{qb}

 $\sigma_{t\text{-ch}}^{ ext{theo}} = 217^{+7}_{-5} \, (ext{scale}) \pm 6 \, (ext{PDF} + lpha_{ ext{S}}) \, ext{pb} \, (ext{NLO, Hathor v2.1})$

- Max LH fit to BDT output in all categories to extract σ_{t-ch,t}, σ_{t-ch,t}, and R_{t-ch}
- Systematic uncertainties: either nuisance parameters (profiled) or varied templates (nonprofiled)

 $\sigma_{t-{
m ch}} =$ 207 \pm 1 (stat) \pm 31 (syst) pb 15.0%

Improvement of R_{t-ch} precision (3.0%) compared to 2015 analysis (12.9%)

Use total cross section to extract V_{tb} : $|f_{\text{LV}}V_{\text{tb}}| = \sqrt{\sigma_{\text{meas}}/\sigma_{\text{theo}}} =$ $0.98 \pm 0.07 \text{ (exp)} \pm 0.02 \text{ (theo)} 7.4\%$

- Cross sections: PS scale, ME-PS matching of signal (nonprof.)
- Ratio: PDF of signal (nonprofiled), MC sample size (prof.)

tW-associated JHEP 10 (2018) 117

- Events with 1 e and 1 μ of opposite sign and jets with p_T > 30 GeV selected
- Define event categories using #jets (j) and # b jets (b): 1j1b (signal), 2j1b and 2j2b (bkg)
- Diagram removal scheme used to account for interference of NLO tW with tt

 2 BDTs trained in 1j1b and 2j1b category to discriminate tW against tt

tW-associated

$\sigma_{\mathrm{tW}}^{\mathrm{theo}} =$ 72 \pm 2 (scale) \pm 3 (PDF + α_{s}) pb (approx. NNLO)

- Max LH fit to BDT outputs in 1j1b and 2j1b categories and to p_T of subleading jet in 2j2b category
- Dominant systematic uncertainties: pileup, int. lumi, JES
- σ_{tw} = 63.1 ± 1.8 (stat) ±
 6.4 (syst) ± 2.1 (lumi) pb 11.0%

Single top: ATLAS and CMS combination Run 1

JHEP 05 (2019) 088

Combine 7 and 8 TeV ATLAS and CMS cross section measurements with BLUE method (assumption: $m_t = 172.5 \text{ GeV}$)

Denise Müller

Single top: ATLAS and CMS combination Run 1

JHEP 05 (2019) 088

- Uncertainty sources grouped into different categories
- Assumptions about correlation between similar sources of uncertainties in different measurements

$\sigma_{t-\text{chan.}}, \sqrt{s} = 8 \text{ TeV}$					
Combined cross-section	87.7 pb				
Uncertainty category	Uncer	Uncertainty			
Clicertainty category	[%]	[pb]			
Data statistical	1.3	1.1			
Simulation statistical	0.6	0.5			
Integrated luminosity	1.7	1.5			
Theory modelling	5.3	4.7			
Background normalisation	1.2	1.1			
Jets	2.6	2.3			
Detector modelling	1.8	1.6			
Total syst. unc. (excl. lumi.)	6.3	5.5			
Total syst. unc. (incl. lumi.)	6.5	5.7			
Total uncertainty	6.7	5.8			

Single top: ATLAS and CMS combination Run 1

JHEP 05 (2019) 088

- Measure $V_{\rm tb}$ using $\sigma_{\rm meas} \propto |f_{\rm LV}V_{\rm tb}|^2$
- Include theoretical cross section uncertainties as well as impact of ±1 GeV m_t variation
- Correlations between input measurements in combination all below 0.6

Single top: ATLAS and CMS combination Run 1

JHEP 05 (2019) 088

8 TeV t channel contributes the most

Dominant uncertainties: theory modeling and theoretical cross section

- CMS tt and single top inclusive cross section measurements in Run 2 (2016 data) presented
 - Precision era reached, can now challenge with theory predictions
 - ► tī dilepton $\tau + e/\mu$ and $ee/e\mu/\mu\mu$ analyses: probe of lepton universality \Rightarrow conserved
 - ► Single top *t* channel: cross section ratio $R_{t-ch} \Rightarrow$ helps constraining different PDF predictions
- ATLAS and CMS combination of Run 1 single top cross section results
 - Extraction of V_{tb}: no hint for anomalous Wtb couplings
- Results with full Run 2 data in preparation

Event selection:

- ▶ 1 isolated e/ μ with p_T > 30/26 GeV, $|\eta|$ < 2.4
- \blacktriangleright ≥2 jets with $p_{
 m T}$ > 30 GeV, $|\eta|$ <2.5
 - ▶ ≥1 b-tagged jet (66% eff., 1% misid. prob.)
- ▶ 1 $\tau_{\rm h}$ candidate (1-prong, 1-prong 1-strip, 1-prong 2-strips, 3-prongs) with $p_{\rm T}$ > 30 GeV, $|\eta|$ < 2.4
- Opposite sign (OS) $\tau_{\rm h} \leftrightarrow \ell$
- ▶ Veto on additional loose e/μ

Data-driven QCD multijet:

• Modeling via data sideband with 1 ℓ and 1 $\tau_{\rm h}$ of same sign (SS)

• Correction factor for normalization: $f_{OS}/f_{SS} = 1.05 \pm 0.05$ (stat+syst) from control region with relaxed $\tau_{\rm h}$ id. and inverted ℓ iso. requirement

Source			Uncertai		
	eth	u Th	Combined	Dileptons	Correlation
Experimental uncertainties		,			
τ _h jet identification	4.7	4.5	4.5	_	0
τ _i , jet misidentification	2.2	2.3	2.3	_	0
Pileup	2.5	2.2	2.3	0.1	1
Lepton identification and isolation	1.8	1.1	1.2	2.0	1
btagging efficiency	1.1	1.2	0.9	0.4	1
The energy scale	0.7	0.8	0.8	0.0	0
Trigger efficiency	2.3	0.6	0.7	0.3	õ
Drell-Yan background	0.4	0.4	0.6	0.9	1
tt background	1.0	0.8	0.6	0.2	0
tW background	0.6	0.5	0.5	11	1
W+iets background	0.1	0.4	0.5	0.2	0
Multijet background	0.1	0.5	0.4	< 0.1	õ
let energy scale	0.1	0.2	0.4	0.4	1
Jet energy resolution	0.6	0.2	0.1	0.1	1
Flectron momentum scale	0.0	0.5	0.1	0.4	1
Muon momentum scale	0.1	0.1	0.1	0.1	1
Diboson background	<0.1	<0.1	<0.1	0.1	1
Theoretical uncertainties	< 0.1	<0.1	<0.1	0.2	1
hfragmontation	22	2.0	2.4	0.7	1
Top guark n- modelling	2.5	2.0	2.4	0.7	1
të ESP scala	1.7	1.0	1.7	0.5	1
tW ESP scale	<0.1	<0.1	-0.1	0.8	1
tive rock scale	1.7	1.6	1.5	0.1	1
tW ISP scale	<0.1	<0.1	-0.1	0.4	1
tive ISK scale	1.1	1.2	1.1	0.1	1
tt ME scale	1.1	1.2	1.1	0.2	1
tw ME scale	< 0.1	< 0.1	<0.1	0.2	1
Dreii– ran ME scale	< 0.1	< 0.1	< 0.1	0.1	1
Semileptonic bradron branching fraction	0.8	0.6	0.7	0.1	1
Underlying event	0.5	0.5	0.6	0.3	1
ME-PS matching	0.4	0.4	0.5	0.2	1
Colour reconnection	< 0.1	< 0.1	<0.1	0.3	1
PDFs	1.5	1.5	1.6	1.1	1
Normalization uncertainties					
Statistical	1.4	1.1	0.9	0.2	0
MC statistical	2.0	1.6	1.6	1.1	0
Integrated luminosity	2.5	2.5	2.5	2.5	1
Extrapolation uncertainties					-
tt ME scale	0.3	0.4	0.3	0.3	0
PDFs	1.2	1.4	1.3	1.0	0
Top quark p _T modelling	1.0	1.1	1.1	0.5	0
tī ISR scale	0.5	0.3	0.3	0.1	0
tt FSR scale	1.9	2.0	1.9	0.1	0
Underlying event	0.3	0.2	0.2	< 0.1	0

EPJC 79 (2019) 368

Use $\sigma_{t\bar{t}}$ result from simultaneous fit of $\sigma_{t\bar{t}}$ and m_t^{MC} to extract m_t and $\alpha_s(m_Z)$ in \overline{MS} scheme with different PDF sets

Extraction of m_t repeated in pole mass scheme using ToP++ 2.0 program and NNLO+NNLL $\sigma_{\rm ff}$ prediction

PDF set	$m_{\rm t}^{\rm pole}$ [GeV]
ABMP16	169.9 ± 1.8 (fit + PDF + α_S) $^{+0.8}_{-1.2}$ (scale)
NNPDF3.1	173.2 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.3}$ (scale)
CT14	173.7 ± 2.0 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)
MMHT14	173.6 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)

t channel

PLB 800 (2020) 135042

	$\Delta R_{t-ch}/R_{t-ch}$	$\Delta \sigma / \sigma(t)$	$\Delta \sigma / \sigma(\bar{t})$
Nonprofiled	l uncertainties		
$\mu_{\rm R}/\mu_{\rm F}$ scale <i>t</i> channel	1.5	6.1	5.0
ME-PS scale matching t channel	0.5	7.1	7.8
PS scale <i>t</i> channel	0.9	10.1	9.6
PDF t channel	3.0	3.1	5.8
Luminosity	—	2.5	2.5
Profiled u	ncertainties		
JES	0.9	1.5	1.8
JER	0.2	< 0.1	0.2
Unclustered energy	< 0.1	0.1	0.2
b tagging	0.1	1.1	1.2
Muon and electron efficiencies	0.2	0.8	0.6
Pileup	0.1	0.9	1.0
QCD bkg. normalization	< 0.1	0.1	0.1
MC sample size	2.5	2.2	3.2
tt bkg. model and normalization	0.2	0.6	0.6
Top quark $p_{\rm T}$	< 0.1	< 0.1	< 0.1
tW bkg. normalization	0.1	0.5	0.6
W/Z+jets bkg. normalization	0.3	0.6	0.9
$\mu_{\rm R}/\mu_{\rm F}$ scale tt, tW, W/Z+jets	0.1	0.2	0.3
PDF tī, W/Z+jets	< 0.1	0.2	0.2

tW-associated

Source	Uncertainty (%)
Experimental	
Trigger efficiencies	2.7
Electron efficiencies	3.2
Muon efficiencies	3.1
JES	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistag rate	0.2
Pileup	3.3
Modeling	
tt μ_R and μ_F scales	2.5
tW μ_R and μ_F scales	0.9
Underlying event	0.4
Matrix element/PS matching	1.8
Initial-state radiation	0.8
Final-state radiation	0.8
Color reconnection	2.0
B fragmentation	1.9
Semileptonic B decay	1.5
PDFs	1.5
DR-DS	1.3
Background normalization	
tť	2.8
VV	0.4
Drell-Yan	1.1
Non-W/Z leptons	1.6
tīV	0.1
MC finite sample size	1.6
Full phase space extrapolation	2.9
Total systematic (excluding integrated luminosity)	10.1
Integrated luminosity	3.3
Statistical	2.8
Total	11.1

Single top: ATLAS and CMS combination Run 1

JHEP 05 (2019) 088

Cross section measurements of ATLAS and CMS, Run 1:

		AT	LAS	CMS			
\sqrt{s}	Process	$\sigma [{ m pb}]$	Lumi. $[fb^{-1}]$	$\sigma [{ m pb}]$	Lumi. $[fb^{-1}]$		
	t-channel	$68~\pm~8$	4.59	$67.2~\pm~6.1$	1.17 - 1.56		
$7 { m TeV}$	tW	$16.8~\pm~5.7$	2.05	16^{+5}_{-4}	4.9		
	s-channel		_	$7.1~\pm~8.1$	5.1		
	<i>t</i> -channel	$89.6_{-6.3}^{+7.1}$	20.2	$83.6~\pm~7.8$	19.7		
$8 { m TeV}$	tW	$23.0^{+3.6}_{-3.9}$	20.3	$23.4~\pm~5.4$	12.2		
	s-channel	$4.8^{+1.8}_{-1.5}$	20.3	$13.4~\pm~7.3$	19.7		

Single top: ATLAS and CMS combination Run 1

JHEP 05 (2019) 088

Uncertainties in combined $|f_{LV}V_{tb}|^2$ measurement

Combined $ f_{\rm LV}V_{tb} ^2$	1.05			
Uncortainty category	Uncertainty			
Cheertainty category	[%]	$\Delta f_{\rm LV} V_{tb} ^2$		
Data statistical	1.8	0.02		
Simulation statistical	0.9	0.01		
Integrated luminosity	1.3	0.01		
Theory modelling	4.5	0.05		
Background normalisation	1.3	0.01		
Jets	2.6	0.03		
Detector modelling	1.6	0.02		
Top-quark mass	0.7	0.01		
Theoretical cross-section	4.3	0.04		
Total syst. unc. (excl. lumi.)	7.1	0.07		
Total syst. unc. (incl. lumi.)	7.2	0.08		
Total uncertainty	7.4	0.08		

	t-channel	t-channel	t-channel	t-channel	tW	tW	tW	tW	s-channel
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	ATLAS
	8 TeV	8 TeV	7 TeV	7 TeV	8 TeV	8 TeV	7 TeV	7 TeV	8 TeV
$\left f_{\mathrm{LV}}V_{tb} ight ^2$	1.06	0.99	1.06	1.05	1.03	1.05	1.07	1.02	0.92
Uncertainties:									
Data statistical	0.01	0.03	0.03	0.06	0.06	0.09	0.18	0.21	0.15
Simulation statistical	0.01	0.01	0.02	0.02	0.01	0.03	0.02	-	0.11
Integrated luminosity	0.02	0.03	0.02	0.02	0.05	0.03	0.07	0.04	0.05
Theory modelling									
ISR/FSR, ren./fact. scale	0.04	0.02	0.03	0.04	0.09	0.13	0.05	0.03	0.06
NLO match., generator	0.03	0.05	0.02	0.04	0.03	-	0.11	-	0.10
Parton shower	0.02	-	-	0.01	0.02	0.15	0.16	0.10	0.02
PDF	0.01	0.02	0.03	0.01	0.01	0.02	0.02	0.02	0.03
DS/DR scheme	-	-	-	-	0.04	0.02	-	0.06	-
Top-quark p_T rew.	-	-	-	-	-	< 0.01	-	-	-
Background normalisation									
Top-quark bkg.	< 0.01	0.02	0.02	0.01	0.02	0.02	0.06	0.06	0.05
Other bkg. from sim.	0.01	< 0.01	< 0.01	0.03	0.02	0.03	0.09	0.04	0.05
Bkg. from data	< 0.01	0.02	0.01	0.01	< 0.01	-	0.02	-	0.01
Jets									
JES common	0.03	0.04	0.08	0.01	0.05	0.04	0.17	0.15	0.05
JES flavour	< 0.01	-	0.02	-	0.02	-	-	-	0.01
JetID	< 0.01	-	0.01	-	< 0.01	-	0.05	-	0.01
JER	< 0.01	0.01	0.02	< 0.01	0.07	0.01	0.02	0.04	0.11
Detector modelling									
Leptons	0.02	0.01	0.03	0.04	0.03	0.02	0.07	0.05	0.02
HLT (had. part)	-	-	-	0.02	-	-	-	-	-
E_{T}^{miss} scale	< 0.01	< 0.01	0.03	< 0.01	0.06	< 0.01	-	0.03	0.01
E_T^{miss} res.	< 0.01	-	-	-	< 0.01	-	-	-	0.01
b-tag	0.01	0.02	0.04	0.02	0.01	0.01	-	0.02	0.07
Pile-up	< 0.01	0.01	< 0.01	0.01	0.03	< 0.01	0.11	0.01	0.01
Top-quark mass	0.01	< 0.01	0.01	_	0.05	0.05	_	-	_
Theoretical cross-section									
$PDF + \alpha_s$	0.03	0.03	0.04	0.04	0.06	0.07	0.08	0.07	0.03
Ren./fact. scale	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
Top-quark mass	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
E_{beam}	< 0.01	$<\!0.01$	< 0.01	$<\!0.01$	< 0.01	$<\!0.01$	< 0.01	$<\!0.01$	< 0.01
Total systematic uncertainty	0.09	0.09	0.13	0.10	0.18	0.23	0.34	0.24	0.24
Total uncertainty	0.09	0.10	0.13	0.12	0.19	0.24	0.38	0.32	0.28