Recent measurements of top quark properties in CMS Giulia Negro on behalf of the CMS Collaboration **ICHEP2020** *29 July 2020* Focus on: Top spin correlations W boson polarization Top Yukawa coupling Top quark mass Top CKM matrix elements F-B asymmetry #### The Top Quark - Heaviest elementary particle discovered so far - Extremely short lifetime → bare quark properties - Large Yukawa coupling to Higgs boson → important for EW symmetry breaking - Spin information preserved in the angular distribution of its decay products → ideal candidate for spin measurements - Studies of its properties provide crucial info to: - test internal consistency of SM - search for new phenomena (BSM physics) Other related talks @ICHEP: - D. Muller on "Inclusive cross sections" - G. Bakas on "Differential cross sections" - S. May on "FCNC and EFT interpretations" #### Spin correlations 3 Phys. Rev. D 100 (2019) 072002 **2016 data** @13 TeV: 35.9 fb⁻¹ - Measurement of full spin density production matrix in dilepton channel - Angular distributions in $t\bar{t}$ rest frame (direct measurement): - full reconstruction of $t\bar{t}$ system required $$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1^i d\cos\theta_2^i} = \frac{1}{4} (1 + B_1^i \cos\theta_1^i + B_2^i \cos\theta_2^i - C_{ii} \cos\theta_1^i \cos\theta_2^i)$$ Polarizations Spin correlations - Coefficients individually probed by 1D angular distribution - Opening angle between leptons $cos \varphi = \hat{\ell}_1 \cdot \hat{\ell}_2$: #### Spin correlations Phys. Rev. D 100 (2019) 072002 - Lab-frame observables (indirect measurement): - ℓ^{\pm} angular distributions $\hat{\ell}_{1}^{lab} \cdot \hat{\ell}_{2}^{lab} = (1 \pm \cos\theta)/2$ - angle between leptons in transverse plane = $|\Delta\phi_{\ell\ell}|$ - All distributions and extracted parameters in close agreement with SM predictions - Unfolded results used to constrain anomalous couplings ### **Дф distribution** $\frac{1}{\sigma} \cdot \frac{d\sigma}{d\Delta \Phi(l^+, l^-)/\pi} \left[1/(\text{rad}/\pi) \right]$ 1.0 **ATLAS** $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^-$ Powheg Pythia8 Powheg Herwig7 Powheg Pythia6 PowPy8 rad. down - Tension between data and predictions in both ATLAS and CMS - First ATLAS+CMS comparison @13 TeV within <u>LHCtopWG</u>: - normalized cross sections at parton level - very good agreement between ATLAS and CMS data and between ATLAS and CMS main MC predictions ### W polarization NEW Run1 data @8 TeV: 20.2 fb⁻¹ (ATLAS) 19.7 fb⁻¹ (CMS) - Fractions of W bosons polarization determined by V-A structure of tWb vertex - in SM unitarity constraint $F_0 + F_L + F_R = 1$ - anomalous contributions to tWb vertex can change probabilities of W helicity states - Distribution of $cos\theta^*$ particularly sensitive to polarization fractions $$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) \frac{F_0}{F_0} + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 \frac{F_L}{F_L} + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 \frac{F_R}{F_R}$$ In SM: ~70% ~30% ~0% - ATLAS + CMS combination with Run1 data - ATLAS: I+jets - CMS: e/mu+jets, single top t-channel | Measurement | F_0 | $F_{ m L}$ | $F_{ m R}$ | |------------------|-----------------------------|-----------------------------|------------------------------| | ATLAS (ℓ+jets) | $0.709 \pm 0.012 \pm 0.015$ | $0.299 \pm 0.008 \pm 0.013$ | $-0.008 \pm 0.006 \pm 0.012$ | | CMS (e+jets) | $0.705 \pm 0.013 \pm 0.037$ | $0.304 \pm 0.009 \pm 0.020$ | $-0.009 \pm 0.005 \pm 0.021$ | | CMS (µ+jets) | $0.685 \pm 0.013 \pm 0.024$ | $0.328 \pm 0.009 \pm 0.014$ | $-0.013 \pm 0.005 \pm 0.017$ | | CMS (single top) | $0.720 \pm 0.039 \pm 0.037$ | $0.298 \pm 0.028 \pm 0.032$ | $-0.018 \pm 0.019 \pm 0.011$ | #### W polarization - Results in agreement with NNLO QCD - Improvement wrt most precise single measurement: - $F_0 \sim 25 \%$ - $F_L \sim 29 \%$ $$F_0 = 0.693 \pm 0.009 \text{ (stat+bkg)} \pm 0.011 \text{ (syst)}$$ $F_L = 0.315 \pm 0.006 \text{ (stat+bkg)} \pm 0.009 \text{ (syst)}$ $F_R = -0.008 \pm 0.005 \text{ (stat+bkg)} \pm 0.006 \text{ (syst)}$ Limits on tWb anomalous couplings $$\mathcal{L}_{\text{tWb}} = -\frac{g}{\sqrt{2}} \overline{b} \, \gamma^{\mu} \left(V_{\text{L}} P_{\text{L}} + V_{\text{R}} P_{\text{R}} \right) t \, W_{\mu}^{-} - \frac{g}{\sqrt{2}} \overline{b} \, \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{\text{W}}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) t \, W_{\mu}^{-} + \text{h.c.}$$ #### 0 in SM Coupling ATLAS+CMS $Re(V_R)$ [-0.11, 0.16] $Re(g_L)$ [-0.08, 0.05] $Re(g_R)$ [-0.04, 0.02] ### Top Yukawa coupling - Weak corrections from virtual exchange of a vector/scalar boson Γ affect cross sections only at $\alpha_S^2 \alpha_w$ order - small contribution to inclusive $t\bar{t}$ cross section - may lead to large distortions of $t\bar{t}$ differential distributions near the production threshold region - Virtual Higgs exchange depends on the top-Higgs Yukawa coupling g_t → quadratic dependence of cross sections on g_t - Corrections to differential cross-sections generated for different values of Y_t as function of $M_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ - Multiplicative corrections applied to gen-level $t\bar{t}$ events $$Y_t = \frac{g_t}{g_t^{SM}}$$ Most sensitive region ### Top Yukawa coupling NEW Full Run2 data @13 TeV: 137 fb-1 - Partial kinematic reconstruction in dilepton channel - Improved sensitivity achieved with proxy variables: $$egin{array}{lcl} M_{\mathrm{b}\ell} &=& M(\mathsf{b}+ar{\mathsf{b}}+\ell+ar{\ell}) \ |\Delta y|_{\mathrm{b}\ell} &=& |y(\mathsf{b}+ar{\ell})-y(ar{\mathsf{b}}+\ell)| \end{array}$$ - 2D likelihood fit in $(M_{b\ell}, \Delta y_{b\ell})$ to constrain Y_t - ullet expected yield extrapolated as a function of Y_t with quadratic fit ### b-tagged jet ### Top Yukawa coupling Phys. Rev. D 100 (2019) 072007 > 2016 data @13 TeV: 35.8 fb-1 > > First analysis to production! Full kinematic reconstruction in lepton+jets channel b-tagged jet - novel technique for events with 1 missing jet → experimental sensitivity enhanced in low invariant mass region - 2D likelihood fit in $(M_{t\bar{t}}, \Delta y_{t\bar{t}})$ to constrain Y_t - Upper limit extraction on top quark Yukawa coupling - Results in agreement between 2 channels - More sensitive than 4t production: $Y_t < 1.7 @ 95\% C.L.$ - Less sensitive than model-dependent Higgs combination: $Y_t = 0.98 \pm 0.14$ #### Boosted mass Phys. Rev. Lett. 124, 202001 (2020) **2016 data** @13 TeV: 35.9 fb⁻¹ - Measurement of top quark mass in hadronic decays of boosted top quarks in lepton+jets channel - Novel jet reconstruction technique, XCone: - excellent m_{jet} resolution - m_t extracted from normalized tt̄ cross section as function of m_{jet} unfolded at particle level: $$m_t = 172.6 \pm 2.5 \,\text{GeV}$$ = 172.6 \pm 0.4 (stat) \pm 1.6 (exp) \pm 1.5 (model) \pm 1.0 (theo) \text{ GeV} $$\frac{m_t}{\Delta m_t} \sim 0.7 \,\%$$ ## Mass from multidifferential talk for details on analysis arXiv:1904.05237 submitted to Eur. Phys. J. **2016 data** @13 TeV: 35.9 fb⁻¹ - Normalized 3D cross sections vs $m_{t\bar{t}}, y_{t\bar{t}},$ N(extra jets) in dilepton channel See G. Bakas's - Extraction of α_S and m_t^{pole} : - cross sections compared to NLO predictions with different PDFs - simultaneous fit of PDF+ α_S + m_t pole at NLO + HERA DIS data $$\begin{split} \alpha_S(m_Z) &= 0.1135^{+0.0021}_{-0.0017} \\ &= 0.1135 \pm 0.0016 \, (\text{fit})^{+0.0002}_{-0.0004} \, (\text{model})^{+0.0008}_{-0.0001} \, (\text{param})^{+0.0011}_{-0.0005} \, (\text{scale}) \\ m_t^{pole} &= 170.5 \pm 0.8 \, \text{GeV} \\ &= 170.5 \pm 0.7 \, (\text{fit}) \, \pm 0.1 \, (\text{model})^{+0.0}_{-0.1} (\text{param}) \pm 0.3 \, (\text{scale}) \, \text{GeV} \end{split}$$ Most precise result on m_tpole from single analysis! $$\frac{m_t}{\Delta m_t} < 0.5 \%$$ - PDFs: - significant impact on gluon PDF at large values of x ### Mass from inclusive measurement 2016 data @13 TeV: 35.9 fb-1 - Inclusive cross section in emu channel - Extraction of $\alpha_S(m_Z)$, m_t in MS scheme, and m_t in pole mass scheme: - simultaneous fit of $\sigma_{t\bar{t}}$ + m_t^{MC} See D. Muller's talk for details on analysis | PDF set | $lpha_S(m_Z)$ | |----------|----------------------------------------------------------------| | ABMP16 | 0.1139 ± 0.0023 (fit + PDF) $^{+0.0014}_{-0.0001}$ (scale) | | NNPDF3.1 | 0.1140 ± 0.0033 (fit + PDF) $^{+0.0021}_{-0.0002}$ (scale) | | CT14 | 0.1148 ± 0.0032 (fit + PDF) $^{+0.0018}_{-0.0002}$ (scale) | | MMHT14 | 0.1151 ± 0.0035 (fit + PDF) $^{+0.0020}_{-0.0002}$ (scale) | | PDF se | t | $m_{t}(m_{t})$ [GeV] | |--------|--------------------------|--------------------------------------------------------| | ABMP | | 1.6 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale) | | NNPD | | 1.6 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale) | | CT14 | 165.0 ± 1 | 1.8 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale) | | MMH | $\Gamma 14 164.9 \pm 1$ | 1.8 (fit + PDF + α_S) $^{+0.1}_{-1.1}$ (scale) | | PDF set | $m_{\rm t}^{ m pole}$ [GeV] | |----------|------------------------------------------------------------------------------------------| | ABMP16 | $169.9 \pm 1.8 \text{ (fit + PDF + } \alpha_S) ^{+0.8}_{-1.2} \text{ (scale)}$ | | NNPDF3.1 | 173.2 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.3}$ (scale) | | CT14 | 173.7 ± 2.0 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale) | | MMHT14 | $173.6 \pm 1.9 \text{ (fit + PDF + } \alpha_S) \stackrel{+0.9}{_{-1.4}} \text{ (scale)}$ | #### Running of top mass Phys. Lett. B 803 (2020) 135263 **2016 data** @ 13 TeV: 35.9 fb⁻¹ • Extracted by comparing NLO predictions to differential cross section measured vs $m_{t\bar{t}}$ in emu channel • Simultaneous measurement of $d\sigma_{t\bar{t}}/dm_{t\bar{t}}$ and m_t^{MC} by means of maximum-likelihood fit to multi-differential distributions Based on EPJC 79 (2019) 368's strategy (see D. Muller's talk) - Running of m_t in agreement with prediction of corresponding RGE within 1.1 σ - No-running scenario excluded at above 95% C.L. #### Top CKM elements Phys. Lett. B 808 (2020) 135609 NEW • Processes directly sensitive to IVtbl, IVtdl, and IVtsl are considered at both the production and decay vertices of the top quark: 2016 data @13 TeV: 35.9 fb-1 | Category | Enriched in | |----------|-------------------------| | 2j1t | $ST_{b,b}$ | | 3j1t | $ST_{b,q}$, $ST_{q,b}$ | | 3j2t | $ST_{b,b}$ | - BDT discriminant trained for each category to separate signal and background processes - Multivariate discriminators used in a simultaneous fit to the 3 event categories to discriminate between ST_{bb}, ST_{bq}, and ST_{qb} #### Top CKM elements CKM matrix elements extracted by signal strengths: $$\mu_{b} = \frac{\sigma_{t-\text{ch.,b}}^{\text{obs}} \times (\text{BR}(t \to \text{Wb}))^{\text{obs}}}{\sigma_{t-\text{ch.,b}} \times (\text{BR}(t \to \text{Wb}))} = \frac{|V_{\text{tb}}|^{4 \text{obs}} \cdot \Gamma_{q}^{\text{obs}} \cdot \Gamma_{\text{top}}}{|V_{\text{tb}}|^{4} \cdot \Gamma_{q} \cdot \Gamma_{\text{top}}^{\text{obs}}}$$ $$\mu_{sd} = \frac{\sigma_{t-\text{ch.,b}}^{\text{obs}} \times (\text{BR}(t \to \text{Wd,s}))^{\text{obs}} + \sigma_{t-\text{ch.,s,d}}^{\text{obs}} \times (\text{BR}(t \to \text{Wb}))^{\text{obs}}}{\sigma_{t-\text{ch.,b}} \times (\text{BR}(t \to \text{Wd,s})) + \sigma_{t-\text{ch.,s,d}} \times (\text{BR}(t \to \text{Wb}))} = \frac{|V_{\text{tb}}|^{4 \text{obs}} \cdot \Gamma_{q}^{\text{obs}} \cdot \Gamma_{\text{top}}^{\text{obs}}}{|V_{\text{tb}}|^{2} \cdot (|V_{\text{ts}}|^{2} + |V_{\text{td}}|^{2})^{\text{obs}} \cdot \Gamma_{q}^{\text{obs}} \cdot \Gamma_{\text{top}}^{\text{obs}}}}$$ - In SM: - assuming CKM unitarity (@ 95% C.L.): $$|V_{\rm tb}| > 0.970$$ $|V_{\rm td}|^2 + |V_{\rm ts}|^2 < 0.057$ - BSM scenario 1: - additional quark families with m > mt - no CKM unitarity $$|V_{\rm tb}| = 0.988 \pm 0.027 \text{ (stat+prof)} \pm 0.043 \text{ (nonprof)}$$ $|V_{\rm td}|^2 + |V_{\rm ts}|^2 = 0.06 \pm 0.05 \text{ (stat+prof)} ^{+0.04}_{-0.03} \text{ (nonprof)}$ - BSM scenario 2: - additional, undetected decays - · All results are consistent with each other - Best determination of these parameters w.r.t. latest measurements of single top quark in Run2 $$|V_{\rm tb}| = 0.988 \pm 0.011 \, ({\rm stat+prof}) \pm 0.021 \, ({\rm nonprof})$$ $|V_{\rm td}|^2 + |V_{\rm ts}|^2 = 0.06 \pm 0.05 \, ({\rm stat+prof}) \pm 0.04 \, ({\rm nonprof})$ $R_{\Gamma} = 0.99 \pm 0.42 \, ({\rm stat+prof}) \pm 0.03 \, ({\rm nonprof}).$ ### Top Forward-Backward JHEP 06 (2020) 146 2016 data @13 TeV: 35.9 fb⁻¹ - Asymmetry in $t\bar{t}$ production due to NLO interference terms between $q\bar{q}$ initial states - Search for anomalies in the angular distribution of produced $t\bar{t}$ pairs: anomalous chromoelectric (dt) + chromomagnetic (μ_t) dipole moments $$A_{\rm FB} = \frac{\sigma(c^* > 0) - \sigma(c^* < 0)}{\sigma(c^* > 0) + \sigma(c^* < 0)}$$ - Lepton+jets events with "boosted" and "resolved" topologies - Multi-dimensional template fit for each category, lepton flavour and charge to $c^*, m_{t\bar{t}}, x_F = 2p_L/\sqrt{s}$ First measurement @LHC! ## Top Forward-Backward Asymmetry • Parameters independently extracted from a linear combination of the 3D templates fitted to data $$A_{\rm FB}^{(1)} = 0.048_{-0.087}^{+0.095} \, ({\rm stat})_{-0.029}^{+0.020} \, ({\rm syst})$$ $$\hat{\mu}_{\rm t} = -0.024^{+0.013}_{-0.009} \, ({\rm stat})^{+0.016}_{-0.011} \, ({\rm syst})$$ $$|\hat{d}_{ m t}| < 0.03$$ at 95% C.L. Values consistent with SM expectations and in good agreement with previous measurements like CMS spin correlation measurements in dilepton channel ### Summary - Several measurements of top quark properties with new Run2 data presented: - Spin correlations in $t\bar{t}$ production - new ATLAS+CMS comparison @13 TeV - ATLAS+CMS Run1 combination of W polarization - Top quark Yukawa coupling with full Run2 dataset - new decay channel + new reconstruction technique - Top quark mass: - from boosted quarks - new jet clustering technique - from multi differential cross sections - from inclusive cross sections - First investigation of top quark mass running - First direct measurement of CKM elements in single-top production and decay - First Forward-Backward asymmetry measurement in $t\bar{t}$ - Increased precision (up to NNLO+NLO EWK level) allowed by huge number of produced top quark events: - better understanding of top quark properties - constraints on new physics - New results with full Run2 data coming soon! Focus on a selection of recent results.. for other CMS results you can look here ### **BACKUP** ## Spin correlations: basis of spin quantization axes - B and C coefficients: - functions of \sqrt{s} and of the top quark scattering angle - written in terms of **orthonormal basis** $\{\hat{k}, \hat{r}, \hat{n}\}$: - helicity \hat{k} -axis: top quark direction in ttbar rest frame - transverse \hat{n} -axis: transverse to production (ttbar scattering) plane $$\hat{n} = \frac{sign(cos\Theta)}{sin\Theta}(\hat{p} \times \hat{k})$$ • \hat{r} -axis: orthogonal to the other 2 axes (normal to k in ttbar scattering plane) $$\hat{r} = \frac{sign(cos\Theta)}{sin\Theta}(\hat{p} - \hat{k}cos\Theta)$$ - \hat{p} = direction of the incoming parton, i.e. direction of the proton beam (z-direction in the laboratory frame) - Θ = top quark scattering angle in ttbar rest frame ### Spin correlations: extraction of f_{SM} - f_{SM} = strength of the measured spin correlation relative to the SM prediction - $f_{SM} = 1$ for SM, 0 for uncorrelated events - values derived using the measured coefficients and NLO calculations allows easy comparison of results between different variables (and between different experiments) | Coefficient | $f_{ m SM}$ \pm (stat) \pm (syst) \pm (theor) | Total uncertainty | |-------------------------------|-----------------------------------------------------|--------------------| | C_{kk} | $0.90 \pm 0.07 \pm 0.09 \pm 0.01$ | ± 0.12 | | C_{rr} | $1.13 \pm 0.32 \pm 0.33 ^{+0.10}_{-0.13}$ | $^{+0.47}_{-0.48}$ | | C_{nn} | $1.01 \pm 0.04 \pm 0.05 \pm 0.01$ | ± 0.06 | | $C_{rk} + C_{kr}$ | $0.94 \pm 0.17 \pm 0.26 \pm 0.01$ | ± 0.31 | | D | $0.97 \pm 0.03 \pm 0.04 ^{+\ 0.01}_{-\ 0.02}$ | ± 0.05 | | $A_{\cos arphi}^{ m lab}$ | $0.74 \pm 0.07 \pm 0.22 ^{+0.06}_{-0.08}$ | $^{+0.24}_{-0.25}$ | | $A_{ \Delta\phi_{\ell\ell} }$ | $1.10 \pm 0.04 \pm 0.09 ^{+0.10}_{-0.14}$ | $+0.14 \\ -0.17$ | D coefficient: most precise measurement to date (5% uncertainty) ### Spin correlations: uncertainties Table 3: Summary of the systematic uncertainties in the extracted top quark polarization coefficients. | Source | | | | | Uncer | tainty | | | | | |--------------------------|---------|--------------------|---------|--------------------|---------|--------------------|------------|------------|------------|------------| | | B_1^k | B_2^k | B_1^r | B_2^r | B_1^n | B_2^n | B_1^{k*} | B_2^{k*} | B_1^{r*} | B_2^{r*} | | JER | 0.001 | $0.0\overline{0}2$ | 0.001 | $0.0\overline{0}1$ | 0.001 | $0.0\overline{0}1$ | 0.000 | 0.001 | 0.001 | 0.001 | | JES | 0.011 | 0.012 | 0.007 | 0.009 | 0.003 | 0.003 | 0.009 | 0.008 | 0.007 | 0.007 | | Unclustered energy | 0.001 | 0.002 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 | 0.002 | | Pileup | 0.000 | 0.000 | 0.002 | 0.002 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | | Trigger | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.001 | 0.002 | 0.002 | | Lepton ID/isolation | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Kinematic reconstruction | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | b tagging | 0.003 | 0.004 | 0.003 | 0.003 | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.001 | | Background | 0.008 | 0.008 | 0.005 | 0.008 | 0.001 | 0.001 | 0.004 | 0.005 | 0.002 | 0.002 | | Scale | 0.005 | 0.004 | 0.004 | 0.009 | 0.003 | 0.004 | 0.003 | 0.004 | 0.006 | 0.005 | | B-fragmentation | 0.009 | 0.009 | 0.004 | 0.005 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | | B-hadron semi-lep. BF | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Color reconnection | 0.005 | 0.003 | 0.003 | 0.004 | 0.008 | 0.005 | 0.006 | 0.008 | 0.006 | 0.008 | | Underlying event | 0.001 | 0.003 | 0.001 | 0.003 | 0.002 | 0.003 | 0.003 | 0.002 | 0.004 | 0.004 | | ME/PS matching | 0.006 | 0.006 | 0.004 | 0.001 | 0.003 | 0.004 | 0.003 | 0.003 | 0.004 | 0.004 | | Top quark mass | 0.006 | 0.007 | 0.000 | 0.001 | 0.001 | 0.002 | 0.002 | 0.001 | 0.002 | 0.002 | | PDF | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.004 | 0.002 | 0.002 | | Top quark $p_{ m T}$ | 0.003 | 0.003 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | | Total systematic | 0.021 | 0.021 | 0.013 | 0.017 | 0.010 | 0.009 | 0.014 | 0.014 | 0.013 | 0.014 | | Data statistics | 0.009 | 0.008 | 0.009 | 0.009 | 0.007 | 0.008 | 0.010 | 0.010 | 0.010 | 0.009 | | MC statistics | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.004 | 0.004 | 0.004 | 0.003 | | Background MC statistics | 0.005 | 0.005 | 0.005 | 0.005 | 0.004 | 0.004 | 0.006 | 0.006 | 0.005 | 0.005 | | Total statistical | 0.010 | 0.010 | 0.011 | 0.011 | 0.009 | 0.009 | 0.012 | 0.012 | 0.012 | 0.011 | | Total | 0.023 | 0.024 | 0.017 | 0.020 | 0.013 | 0.013 | 0.018 | 0.019 | 0.018 | 0.017 | ## Spin correlations: uncertainties | Table 4: Summary of the systematic uncertainties in the extracted tt spin correlation coefficients. | | | | | | | | | | | | | |-----------------------------------------------------------------------------------------------------|-------------|----------|----------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------|---------------------------------|-------------------------------| | Source | Uncertainty | | | | | | | | | | | | | | C_{kk} | C_{rr} | C_{nn} | $C_{rk} + C_{kr}$ | $C_{rk}-C_{kr}$ | $C_{nr} + C_{rn}$ | $C_{nr}-C_{rn}$ | $C_{nk} + C_{kn}$ | $C_{nk}-C_{kn}$ | D | $A_{\cos arphi}^{\mathrm{lab}}$ | $A_{ \Delta\phi_{\ell\ell} }$ | | JER | 0.001 | 0.001 | 0.001 | 0.004 | 0.002 | 0.001 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 | | JES | 0.012 | 0.009 | 0.005 | 0.022 | 0.011 | 0.011 | 0.009 | 0.012 | 0.007 | 0.002 | 0.000 | 0.001 | | Unclustered energy | 0.001 | 0.001 | 0.001 | 0.004 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | | Pileup | 0.002 | 0.000 | 0.001 | 0.004 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | | Trigger | 0.001 | 0.001 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | | Lepton ID/isolation | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Kinematic reconstruction | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | b tagging | 0.004 | 0.001 | 0.002 | 0.005 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | | Background | 0.017 | 0.009 | 0.008 | 0.025 | 0.006 | 0.004 | 0.004 | 0.007 | 0.003 | 0.004 | 0.008 | 0.002 | | Scale | 0.012 | 0.006 | 0.007 | 0.026 | 0.011 | 0.007 | 0.014 | 0.011 | 0.007 | 0.003 | 0.002 | 0.003 | | B-fragmentation | 0.014 | 0.002 | 0.005 | 0.017 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.003 | 0.000 | 0.001 | | B-hadron semi-lep. BF | 0.000 | 0.001 | 0.001 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | | Color reconnection | 0.005 | 0.013 | 0.006 | 0.013 | 0.011 | 0.014 | 0.017 | 0.009 | 0.008 | 0.002 | 0.001 | 0.001 | | Underlying event | 0.008 | 0.002 | 0.002 | 0.004 | 0.010 | 0.007 | 0.005 | 0.007 | 0.002 | 0.003 | 0.001 | 0.001 | | ME/PS matching | 0.004 | 0.003 | 0.001 | 0.009 | 0.016 | 0.011 | 0.001 | 0.012 | 0.009 | 0.002 | 0.002 | 0.004 | | Top quark mass | 0.001 | 0.002 | 0.006 | 0.006 | 0.009 | 0.002 | 0.002 | 0.009 | 0.001 | 0.002 | 0.001 | 0.000 | | PDF | 0.005 | 0.005 | 0.001 | 0.004 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.007 | 0.002 | | Top quark p_{T} | 0.008 | 0.010 | 0.005 | 0.019 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.004 | 0.003 | 0.005 | | Totai systematic | 0.031 | 0.023 | 0.017 | 0.053 | 0.029 | 0.024 | 0.025 | 0.026 | 0.016 | 0.009 | 0.011 | 0.008 | | Data statistics | 0.018 | 0.019 | 0.010 | 0.029 | 0.029 | 0.024 | 0.025 | 0.025 | 0.020 | 0.006 | 0.003 | 0.003 | | MC statistics | 0.007 | 0.007 | 0.004 | 0.011 | 0.011 | 0.009 | 0.009 | 0.010 | 0.008 | 0.002 | 0.001 | 0.001 | | Background MC statistics | 0.011 | 0.010 | 0.005 | 0.018 | 0.017 | 0.012 | 0.010 | 0.015 | 0.012 | 0.003 | 0.002 | 0.002 | | Total statistical | 0.022 | 0.023 | 0.012 | 0.035 | 0.035 | 0.028 | 0.028 | 0.031 | 0.025 | 0.007 | 0.003 | 0.003 | | Total | 0.038 | 0.033 | 0.020 | 0.064 | 0.046 | 0.037 | 0.038 | 0.041 | 0.029 | 0.011 | 0.012 | 0.008 | #### W polarization Limits on anomalous right-handed vector (VR), and left- and right-handed tensor (gL, gR) tWb couplings set while fixing all others to their SM values: $$\mathcal{L}_{\text{tWb}} = -\frac{g}{\sqrt{2}} \overline{b} \, \gamma^{\mu} \left(V_{\text{L}} P_{\text{L}} + \frac{V_{\text{R}}}{V_{\text{R}}} P_{\text{R}} \right) t \, W_{\mu}^{-} - \frac{g}{\sqrt{2}} \overline{b} \, \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{\text{W}}} \left(g_{\text{L}} P_{\text{L}} + g_{\text{R}} P_{\text{R}} \right) t \, W_{\mu}^{-} + \text{h.c.}$$ $$0 \text{ in SM}$$ | | 95% CL interval | | | | | | | | | |-----------|-----------------|---------------|-----------------------|--|--|--|--|--|--| | Coupling | ATLAS | CMS | ATLAS+CMS combination | | | | | | | | $Re(V_R)$ | [-0.17, 0.25] | [-0.12, 0.16] | [-0.11, 0.16] | | | | | | | | $Re(g_L)$ | [-0.11, 0.08] | [-0.09, 0.06] | [-0.08, 0.05] | | | | | | | | $Re(g_R)$ | [-0.03, 0.06] | [-0.06, 0.01] | [-0.04, 0.02] | | | | | | | • Limits on corresponding Wilson coefficients: $$-L^{ ext{eff}} = \mathcal{L}^{ ext{SM}} + \Sigma_x rac{C_x}{\Lambda^2} O_x + \mathcal{O}\left(rac{1}{\Lambda^3} ight) + \cdots$$ | | 95% CL interval | | | | | | | | |-----------------------|-----------------|---------------|-----------------------|--|--|--|--|--| | Coefficient | ATLAS | CMS | ATLAS+CMS combination | | | | | | | $C^*_{\phi\phi}$ | [-5.64, 7.68] | [-3.84, 4.92] | [-3.48, 5.16] | | | | | | | C_{bW}^{*} | [-1.30, 0.96] | [-1.06, 0.72] | [-0.96, 0.67] | | | | | | | C_{tW} | [-0.34, 0.67] | [-0.62, 0.19] | [-0.48, 0.29] | | | | | | #### W polarization: uncertainties - Uncertainty treatment harmonized between 2 collaborations - Correlations between observables and between CMS & ATLAS studied in detail - drastic variation of correlation assumptions resulting in deviations covered by uncertainties of combined measurement arXiv:2005.03799 submitted to JHEP | | ATLAS+C | MS combination | |-------------------------------|--------------|----------------| | | F_0 | $F_{ m L}$ | | Fractions | 0.693 | 0.315 | | Uncertainty category | | | | Samples size and background d | etermination | | | Stat+bkg | 0.009 | 0.006 | | Size of simulated samples | 0.005 | 0.003 | | Detector modelling | | | | JES | 0.004 | 0.002 | | JER | 0.004 | 0.002 | | b tagging | 0.001 | 0.001 | | JVF | 0.001 | 0.001 | | Jet reconstruction | < 0.001 | < 0.001 | | Lepton efficiency | 0.002 | 0.001 | | Pileup | < 0.001 | < 0.001 | | Signal modelling | | | | Top quark mass | 0.003 | 0.004 | | Simulation model choice | 0.006 | 0.005 | | Radiation and scales | 0.005 | 0.004 | | Top quark $p_{\rm T}$ | 0.001 | 0.002 | | PDF | 0.001 | 0.001 | | Single top method | 0.001 | < 0.001 | | Total uncertainty | 0.014 | 0.011 | #### Correlations within the same measurement - ATLAS: from covariance matrix of each systematic uncertainty category - CMS: $\rho(F_0, F_L) = \frac{\sigma^2[F_R] \sigma^2[F_0] \sigma^2[F_L]}{2\sigma[F_0]\sigma[F_L]}$ #### Correlations between the ATLAS and CMS experiments ρ_{LHC}(F_i,F_j) - Assuming: $\rho_{LHC}(F_0,F_0) = \rho_{LHC}(F_L,F_L)$ and $\rho_{LHC}(F_0,F_L) = -\rho_{LHC}(F_0,F_0)$ - Detector modelling, JER, data-driven background estimation and method-specific uncertainty → uncorrelated, ρ_{LHC}(F₀,F₀)= 0 - Radiation & scales, JES → partially correlated, ρ_{LHC}(F₀,F₀)= 0.5, 0.2 - All other sources → fully correlated, ρ_{LHC}(F₀,F₀)= +1 #### Correlations between measurements within the CMS experiment - Assuming $\rho_{CMS}(F_i,F_j)_{(st, e+jets)} = \rho_{CMS}(F_i,F_j)_{(st, mu+jets)} = \rho_{CMS}(F_i,F_j)_{(st, l+jets)}$ - In all cases: assuming $\rho_{CMS}(F_0,F_0) = \rho_{CMS}(F_L,F_L)$ and $\rho_{CMS}(F_0,F_L) = -\rho_{CMS}(F_0,F_0)$ - Data statistics, background estimation, lepton efficiency, MC statistics → uncorrelated - All other sources → fully correlated CMS-PAS-TOP-19-008 ## Top Yukawa coupling: multiplicative corrections \circ The full expression for the EW multiplier $R_{\rm EW}$ used in the fit, including the associated uncertainty, it $$R_{\mathrm{EW}}^{\mathrm{bin}}(Y_{\mathrm{t}}, \phi) = (1 + \delta_{\mathrm{EW}}^{\mathrm{bin}}(Y_{\mathrm{t}})) \times (1 + \delta_{\mathrm{QCD}}^{\mathrm{bin}} \delta_{\mathrm{EW}}^{\mathrm{bin}}(Y_{\mathrm{t}}))^{\phi},$$ where $\delta_{\rm QCD}^{\rm bin}\delta_{\rm EW}^{\rm bin}$ represents the cross term arising from the difference in multiplicative and additive approaches. Specifically, $$\delta_{ m EW} = \quad (K_{ m EW}^{ m NLO}(Y_{ m t}) - 1) \, \longrightarrow \, \quad \delta_{ m EW}^{ m bin} = rac{n_{ m HATHOR}^{ m bin} - n_{ m LO}^{ m bin}}{n_{ m LO}^{ m bin}} \ \delta_{ m QCD} = \quad rac{\Sigma_{ m POWHEG} - \Sigma_{ m LO\,QCD}}{\Sigma_{ m POWHEG}} \, \longrightarrow \, \quad \delta_{ m QCD}^{ m bin} = rac{n_{ m POWHEG}^{ m bin} - n_{ m LO}^{ m bin}}{n_{ m POWHEG}^{ m bin}}$$ \circ The uncertainty term is included only in the sensitive region where virtual Higgs exchange enhances $t\bar{t}$ production. ## Top Yukawa coupling: systematic uncertainties - JEC split into 19 independent sources → dominant experimental uncertainty - QCD shape uncertainty derived by b-tagging inversion → larger and higher impact uncertainties for 3 jets channel | Uncertainty | $t\bar{t}$ | Single t | V + jets | QCD multije | |------------------------------------------|---------------------|----------|----------|-------------| | Integrated luminosity | 2.5% | 2.5% | 2.5% | 2.5% | | Pileup | 0–1% | 0-1% | | | | Lepton identification/trigger | 1.9% | 1.9% | 1.9% | | | JEC | 0–5% | 0-5% | | | | JER | 0-0.6% | | | | | b tag scale factor | 3% | 3% | 2-3% | | | b mistag scale factor | 0.5% | 1% | 3-6% | | | Background normalization | | 15% | 30% | 30% | | QCD multijet CR definition | | | | 0-60% | | Factorization and renormalization scales | 0–6% | 2-5% | 0-15% | | | PDF | 0.5-1.5% | 0.5-1.5% | | | | $\alpha_S(m_Z)$ in PDFs | 1% | 1.5% | | | | Top quark mass | 1-5% | | | | | Top quark p_T modeling | 0-0.5% | | | | | Parton shower | | | | | | -NLO shower matching | 1.5–5% | | | | | -ISR | 2–3% | | | | | -FSR | 0–9% | 0-12% | | | | -Color reconnection | 0-3% | | | | | -b jet fragmentation | 0-3% | 0-5% | | | | -b hadron branching fraction | 3% | 2.5-3% | | | | Weak correction $\delta_{OCD}\delta_{W}$ | $0-0.2\% \ (Y_t=2)$ | | | | **CMS-PAS-TOP-19-008** ## Top Yukawa coupling: systematic uncertainties - Very similar to those of previous measurement - Main differences: - lack of QCD multijet background - use of full Run 2 data - Correlations - full or partial correlations are imposed on nuisance parameters between data-taking periods where appropriate - Dominant uncertainties: - EW correction uncertainty - ISR, FSR - ME scale variations (RS, FS) - JES | Uncertainty: | type | |------------------------------------|-----------------------| | EW correction uncertainty | signal shape modifier | | signal & background cross sections | normalization | | ME scale variations | shape | | b fragmentation, b decay | shape | | pdf uncertainties | mostly shape | | ISR, FSR | shape | | top mass | shape | | hdamp, MC tune | normalization* | | btag SFs, lepton SFs | shape | | lumi | shape | | pileup | shape | | prefire corrections | shape | | JER | shape | | JES | mostly shape | #### **Boosted mass** - find 2 jets with large radius R=1.2 (corresponding to 2 boosted top quarks) - calculate ΔR(lep, jet) for both jets - lowest ΔR → leptonic jet; other → hadronic jet - find subjets using R=0.4 - four-momenta of subjets combined to form final jet - Procedure results in: - 2 large-radius XCone jets (pT > 400 GeV) with 3 XCone subjets each (pT > 30 GeV) - narrow particle-level width and excellent mjet resolution - high performance reconstructing the top quark decay - XCone on detector level: - no JEC for XCone available - derive additional correction on top of AK4 JEC in all had t ⁻t - correction applied dependent on pT and η of subjets - improvement: - better statistics - no mass shift (peak around mt) - less pile-up effects (mjet stable against PU) - better mass resolution (~6%) ### Boosted mass: uncertainties - Experimental uncertainties: - JEC, JER, XCone additional correction, lepton ID, lepton Trigger, b-tagging, PU - Model uncertainties: scales μ r, μ f, ISR, FSR, hdamp, UE, choice of mtop, pdf - Other uncertainties: - statistics - background rates - luminosity 2.5% on every bin - Limiting uncertainty: jet mass scale | source | uncertainty [GeV] | |--------------------------|-------------------| | Total uncertainty | 2.47 | | Statistical uncertainty | 0.44 | | Experimental uncertainty | 1.57 | | jet energy scale | 1.52 | | jet energy resolution | 0.48 | | XCone jet correction | 0.45 | | Model uncertainty | 1.55 | | FSR | 1.17 | | CR | 0.66 | | UE tune | 0.51 | | choice of mtop | 0.48 | | Theoretical uncertainty | 1.02 | | CR | 0.74 | | FSR | 0.51 | # Mass from multidifferential - Simultaneous fit of PDF+αS+mtpole at NLO + HERA DIS data - extraction of αS, mtpole as minimum of parabola modelling χ2 between data and NLO predictions as a function of the input αS(mZ) or mtpole value using different PDF sets and scale values - uncertainty estimated from the $\Delta \chi 2 = 1$ variation | PDF set | $\alpha_S(m_Z)$ | |------------|-------------------------------------------------------------------------------------------------------------------------| | CT14 | $0.1144 \pm 0.0016 ({ m fit}) \pm 0.0019 ({ m PDF})^{+0.0020}_{-0.0016} (\mu)^{+0.0019}_{-0.0011} (m_{ m t}^{ m pole})$ | | HERAPDF2.0 | $0.1200 \pm 0.0014 ({ m fit}) \pm 0.0007 ({ m PDF})^{+0.0011}_{-0.0012} (\mu)^{+0.0007}_{-0.0009} (m_{ m t}^{ m pole})$ | | ABMP16 | $0.1169 \pm 0.0009 ({ m fit}) \pm 0.0010 ({ m PDF})^{+0.0008}_{-0.0007} (\mu)^{+0.0006}_{-0.0006} (m_{ m t}^{ m pole})$ | | PDF set | $m_{\mathrm{t}}^{\mathrm{pole}}$ [GeV] | |------------|------------------------------------------------------------------------------------------| | CT14 | $171.1 \pm 0.7 ({ m fit}) \pm 0.2 ({ m PDF})^{+0.4}_{-0.4} (\mu)^{+0.1}_{-0.1} (lpha_S)$ | | HERAPDF2.0 | $170.8 \pm 0.6 ({ m fit}) \pm 0.1 ({ m PDF})^{+0.3}_{-0.3} (\mu)^{+0.1}_{-0.1} (lpha_S)$ | | ABMP16 | $170.9 \pm 0.7 ({ m fit}) \pm 0.1 ({ m PDF})^{+0.4}_{-0.3} (\mu)^{+0.2}_{-0.2} (lpha_S)$ | # Mass from multidifferential - Impact on PDFs: - significant on gluon PDF at large values of x - a reduction of uncertainties is observed for the gluon distribution, especially at $x \sim 0.1$ where the included tt data are expected to provide constraints, while the improvement at x. 0.1 originates mainly from the reduced correlation between αS (mZ) and the gluon PDF Figure 23: The relative total PDF uncertainties in the fit using the HERA DIS data only, and the HERA DIS and $t\bar{t}$ data. #### Running of top mass - Beyond leading order in perturbation theory, the fundamental parameters of the quantum chromodynamics (QCD) Lagrangian, i.e. the strong coupling constant αS and the quark masses, are subject to renormalization - As a result, these parameters depend on the scale at which they are evaluated - Numerical values of extracted masses: - · experimental uncertainty only | scale μ [GeV] | $m_{ m t}(m_{ m t})$ [GeV] | $\mathit{m}_{\mathrm{t}}(\mu)$ [GeV] | |-------------------|----------------------------|--------------------------------------| | 384.0 | $164.41^{+0.75}_{-0.77}$ | $155.44^{+0.75}_{-0.78}$ | | 476.2 | $161.9^{+3.0}_{-3.0}$ | $150.9^{+2.9}_{-3.0}$ | | 644.3 | $162.0_{-4.8}^{+4.7}$ | $148.2^{+4.6}_{-4.7}$ | | 1024 | $153.6^{+9.7}_{-9.3}$ | $136.4^{+9.2}_{-8.8}$ | running of α_S is described by renormalization group equation (RGE) $$lpha_{ m S}(\mu) = rac{lpha_{ m S}(\mu_0)}{lpha_{ m S}(\mu_0) rac{11N_c - 2N_f}{12\pi} \ln rac{\mu^2}{\mu_0^2}}$$ (NLO) typical procedure to measure α_S running: - extract $\alpha_{\rm S}(m_{\rm Z})$ from some final state observable in limited scale range (e.g. $\mu={\rm jet}~{\rm p_T})$ - convert $\alpha_{\rm S}(m_{\rm Z})$ to $\alpha_{\rm S}(\mu)$ using RGE, w. appropriate choice of μ in each bin **N.B.** this is equivalent to extracting $\alpha_{\rm S}(\mu)$ directly (RGE implicitly assumed) - well-established procedure - experimentally verified on a very wide range of scales, at different experiments similar procedure can be used to extract running of heavy quark masses short distance $\overline{\rm MS}$ mass can be expressed in terms of pole mass $$m_{ m q}(m_{ m q}) = m_{ m q}^{ m pole} \left[1 - rac{4}{3\pi}lpha_{ m S}(m_{ m q}) + \mathcal{O}(lpha_{ m S}^2) ight]$$ and evolved to an arbitrary scale μ $$m_{ m q}(\mu)=m_{ m q}(m_{ m q})\left[1- rac{lpha_{ m S}(\mu)}{\pi}\ln rac{\mu^2}{m_{ m q}^2}+\mathcal{O}(lpha_{ m S}^2) ight]$$ - running of m_c has been experimentally determined at HERA experiments - running of m_b determined with data from different experiments - ightarrow goal: determine running of \emph{m}_{t} using LHC data at 13 TeV #### Running of top mass - Dominant uncertainties in the measured σ tt μ k are associated with the integrated luminosity, the lepton identification efficiencies, the jet energy scales and, at large mtt, the modelling of the top quark pT - Additional uncertainty (≈ 1%) due to statistical fluctuations in templates - Total uncertainty ~4-5% | , iiidoc | | |-------------------------------------------------|--------------------| | Source | Uncertainty [%] | | Jet energy scale | 1.0 | | PDF | 1.1 | | Lepton ID/isolation | 2.2 | | Electron energy | 0.5 | | b quark fragmentation | 1.1 | | b tagging | 0.2 | | Colour reconnection | 0.7 | | Kinematic reconstruction | 0.4 | | DY ME scale | 0.4 | | Jet energy resolution | 0.2 | | Muon energy scale | 0.1 | | Pile-up | 0.5 | | tW FSR scale | 0.2 | | tW ISR scale | 0.2 | | tW ME scale | 0.2 | | m _t ^{MC} | 0.5 | | Top quark $p_{\rm T}$ | 0.7 | | Trigger
b hadron BF | 0.3 | | tī FSR scale | 0.1 | | tt ISR scale | 0.3 | | ME/PS matching | 0.2 | | tī ME scale | 0.3 | | UE tune | 0.3 | | DY background | 0.9 | | tW background | 0.6 | | W+jets background | 0.1 | | Diboson background | 0.6 | | tt background | 0.3 | | Integrated luminosity | 2.6 | | Statistical | 0.7 | | MC statistical | 1.5 | | Extrapolation uncertainties | | | t t ISR scale | ±0.2 | | tī FSR scale | ± 0.1 | | tī ME scale | ±0.1 | | UE tune | $\mp^{<0.1}_{0.1}$ | | PDF | $\pm^{0.8}_{0.5}$ | | Top quark $p_{\rm T}$ | $\pm^{<0.1}_{0.1}$ | | Total $\sigma_{ m tar t}^{(\mu_1)}$ uncertainty | +4.7
-4.4 | #### Top CKM elements Phys. Lett. B 808 (2020) 135609 - Multivariate discrimination between signal and background processes - BDT discriminant trained for each category #### 2-jets-1-tag - j' defined as the non b-tagged jet - \bullet QCD sample depleted with $m_{ m T}^{ m W} >$ 50 GeV requirement - BDT training: single top t-channel $(ST_{(b,b)})$ vs $t\bar{t}$ and W + jets #### 3-jets-1-tag - \bullet j' defined as the most forward non b-tagged jet - signal region $m_{\rm T}^{\rm W} > 50 \; { m GeV} \; \& \; |\eta_{j'}| > 2.5$ - BDT training: single top t-channel with $|V_{tq}|^2$ vertex in decay $(ST_{(b,q)})$ vs single top t-channel $(ST_{(b,b)})$, standard $t\bar{t}$ and W+jets #### 3-jets-2-tags - j' defined as the non b-tagged jet - BDT training: single top t-channel $(ST_{(b,b)})$ vs $t\bar{t}$ ### Top CKM elements - Systematic uncertainties - Profiled = treated as nuisance parameters and profiled in the fit procedure - Nonprofiled = estimated as the difference between the result of the fit procedure by varying the systematic scenario | Table 4: The sources and relative values in percent of the systematic uncertainty in the measure- | |---| | ment of the $ST_{b,b}$ cross section. The uncertainties are broken up into profiled and nonprofiled | | sources. | | sources. | | | | |-------------|----------------|---|---| | | Treatment | Uncertainty | $\Delta\sigma_{ST_{\mathrm{b,b}}}/\sigma$ (%) | | | Profiled | Lepton trigger and reconstruction | 0.50 | | | | Limited size of simulated event samples | 3.13 | | | | t t modelling | 0.66 | | | | Pileup | 0.35 | | | | QCD background normalisation | 0.08 | | | | W+jets composition | 0.13 | | | \ \ | Other backgrounds μ_R/μ_F | 0.44 | | | | PDF for background processes | 0.42 | | | | b tagging | 0.73 | | | | Total profiled | 3.4 | | | Name (il. 1 | Integrated luminosity | 2.5 | | | | JER | 2.8 | | | | JES | 8.0 | | | | PDF for signal process | 3.8 | | Nonprofiled | Nonpromed | Signal $\mu_{\rm R}/\mu_{\rm F}$ | 2.4 | | | ME-PS matching | 3.7 | | | | | Parton shower scale | 6.1 | | | | Total nonprofiled | 11.5 | | | Total uncertai | nty | 12.0 | #### JHEP 06 (2020) 146 ## Top Forward-Backward Asymmetry: event type - Semileptonic top pair decays: - use lepton charge to tag top vs. antitop direction - greater sensitivity and higher qqbar fraction at higher momentum (large lxFI) - Type-1: boosted, fully merged - non-isolated leptons - 1 fat top-tagged jet (high Lorentz boost in which the decay products of the hadronic top quark are fully merged into a single jet) - hemispheric separation - Type-2: boosted, untagged - non-isolated leptons - untagged (but heavy) fat jet - reconstruction only uses small jets - Type-3: resolved - isolated leptons - no hemispherical separation - only small (low-mass) jets - In total 20 analysis channels: - 2 lepton flavors, both split based on charge - 3 decay topologies with orthogonal selections - 2 boosted topologies include background CRs # Top Forward-Backward Asymmetry: uncertainties | Source | Uncertainty in | Type | Size | Affects | |---|--|-------|-------|-----------------------| | Jet energy scale | $\pm 1\sigma(p_{\mathrm{T}},\eta,A)$ | N & S | 7.6% | All | | Jet energy resolution | $\pm 1\sigma(\eta)$ | N & S | 3.2% | All | | Pileup | $\pm 1\sigma(n_{ m PV})$ | N & S | 2.9% | All | | Boosted μ +jets trigger eff. | $\pm 1\sigma(p_{ m T},\eta)$ | N & S | 0.4% | Type-1/2 μ +jets | | Resolved μ +jets trigger eff. | $\pm 1\sigma(p_{ m T},\eta)$ | N & S | 0.1% | Type-3 μ +jets | | Boosted e+jets trigger eff. | $\pm 1\sigma(p_{\mathrm{T}}, \eta)$ | N & S | 18.6% | Type-1/2 e+jets | | Resolved e+jets trigger eff. | $\pm 1\sigma(p_{ m T},\eta)$ | N & S | 2.5% | Type-3 e+jets | | Muon ident. eff. | $\pm 1\sigma(p_{\mathrm{T}}, \eta ,n_{\mathrm{PV}})$ | N & S | 0.4% | All μ+jets | | Muon PF isolation eff. | $\pm 1\sigma(p_{\mathrm{T}}, \eta ,n_{\mathrm{PV}})$ | N & S | 0.2% | Type-3 μ +jets | | Electron ident. eff. | $\pm 1\sigma(p_{\mathrm{T}}, \eta)$ | N&S | 1.0% | All e+jets | | b tag eff., b jets (loose) | $\pm 1\sigma(p_{\mathrm{T}},\eta)$ | N&S | 2.5% | Type-1/2 | | b tag eff., c jets (loose) | $\pm 1\sigma(p_{\mathrm{T}},\eta)$ | N&S | 1.2% | Type-1/2 | | b tag eff., light jets (loose) | $\pm 1\sigma(p_{ m T},\eta)$ | N&S | 6.3% | Type-1/2 | | b tag eff., b jets (medium) | $\pm 1\sigma(p_{\mathrm{T}},\eta)$ | N&S | 1.9% | Type-3 | | b tag eff., c jets (medium) | $\pm 1\sigma(p_{\mathrm{T}},\eta)$ | N&S | 0.8% | Type-3 | | b tag eff., light jets (medium) | $\pm 1\sigma(p_{\mathrm{T}},\eta)$ | N&S | 1.2% | Type-3 | | t tag eff. (merged) | $\pm 1\sigma(p_{\mathrm{T}})$ | N&S | 1.6% | Type-1 | | t tag eff. (semimerged) | $\pm 1\sigma(p_{ m T})$ | N&S | 2.2% | Type-1 | | t tag eff. (not merged) | $\pm 1\sigma(p_{ m T})$ | N & S | 2.8% | Type-1 | | ISR scale | $\pm 1\sigma$ | N & S | 2.2% | tt | | FSR scale | $\pm 1\sigma$ | N & S | 2.6% | tī | | ME-PS matching (h_{damp}) | $\pm 1\sigma$ | N & S | 2.5% | tī | | CUETP8M2T4 tune | $\pm 1\sigma$ | N & S | 2.4% | tī | | Color reconnection | $\pm 1\sigma$ | S | 2.8% | tī | | b fragmentation | $\pm 1\sigma(x_{\rm b})$ | N & S | 3.7% | tī | | b branching fraction | $\pm 1\sigma$ | N & S | 1.0% | tī | | Top quark p_T reweighting | $\pm 1\sigma(p_{\mathrm{T}}^{\mathrm{gen,t}},p_{\mathrm{T}}^{\mathrm{gen,ar{t}}})$ | S | 2.5% | tī | | PDF/α _S variation | NNPDF 3.0 | S | 1.5% | tī | | Renormalization scale μ_R | $ rac{1}{2}\mu_{ m R} o 2\mu_{ m R}$ | S | 2.6% | tī | | Factorization scale $\mu_{\rm F}$ | $\frac{1}{2}\mu_{\mathrm{F}} \rightarrow 2\mu_{\mathrm{F}}$ | S | 1.5% | tī | | Combined μ_R/μ_F scale | $\frac{1}{2} \rightarrow 2(\mu_{\rm R} \text{ and } \mu_{\rm F})$ | S | 3.8% | $t\bar{t}$ MC | | Integrated luminosity | ±2.5% | N | _ | All | | $R_{ m qar{q}}$ | $\pm 1\%$ | N & S | _ | All f_{qp*}/f_{qm*} | | R _{W+jets} | $\pm 10\%$ | N | _ | All W+jets MC | | $R_{\rm QCD}^{t/C/R}$ (20 params total) | $\pm 1\sigma$ (stat) | N | _ | Multijet |