

FCNC and EFT interpretations in top quark events at CMS

ICHEP 2020

Samuel May on behalf of the CMS Collaboration

Motivation for new physics (NP)

- The usual suspects compelling motivations for physics beyond Standard Model:
 - 1. Strong astrophysical evidence for dark matter & dark energy
 - 2. Aspects of SM are theoretically unsatisfying:
 - Hierarchy problem: why is there such a discrepancy between Higgs mass, $\mathcal{O}(10^2)$ GeV, and Planck mass $\mathcal{O}(10^{19})$ GeV?
 - Matter-antimatter asymmetry: the amount of CP violation observed in the weak interaction cannot account for the observed dominance of matter over antimatter in the universe.
 - Strong CP problem: the QCD Lagrangian permits CP-violating terms, but no observed evidence of CP violation in the strong interaction.
- So, why haven't we found NP at the LHC?

$\Lambda_{\rm NP} > E_{\rm LHC}$?

Perhaps the scale of NP is beyond the energies accessible at the LHC.

New physics at $\Lambda_{\rm NP} > E_{\rm LHC}$ through the top quark

- ullet How can we observe signatures of new physics models which live at energy scales beyond $E_{\rm LHC}$? Through the top quark!
 - Many BSM theories result in measurable deviations of the top quark's couplings and/or allow for interactions forbidden in the SM at rates accessible at the LHC.

Effective Field Theory Interpretations

- Given plethora of BSM theories, how can we interpret the results of top quark measurements in a unified, consistent way?
 - Effective Field Theory Interpretations: express any deviations from SM in terms of coefficients on higher-dimensional operators.

$$\mathcal{L} = \mathcal{L}_{\text{SM}} \ + \ \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} O_{k}^{(5)} \ + \ \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} O_{k}^{(6)} \ + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right)$$

$$\begin{array}{c} \text{dim-5: neutrino masses,} \\ \text{lepton number violation,} \\ \text{don't couple to top quarks [1]} \end{array}$$

$$\begin{array}{c} \text{dim-6: CM/CE dipole moments, FCNC, etc} \\ \\ \text{BSM Models} \end{array}$$

$$\begin{array}{c} \text{(1)} \\ \\ \text{Effective Field Theory Interpretations} \end{array}$$

Results at CMS: Modified Top

Interpretations

Interactions & EFT

Modified Top Interactions & EFT Interpretations

EFT in top-Z Interactions

- JHEP 03 (2020) 056: <u>link</u>
- Inclusive and differential $(d\sigma/dp_T^Z, d\sigma/d\cos\theta_Z^*)$ cross section measurements of $t\bar{t}Z$ production in 3l/4l final states with 77.5 fb⁻¹.
- - Constraints on WC determined through fit to observed yields in data.
- Constraints on dim-6 Wilson coefficients:
 - Electroweak dipole moments: C_{tZ} , $C_{tZ}^{[I]}$
 - Anomalous neutral current interactions: $C_{\phi t}$, $C_{\phi O}^-$

EFT + BSM interpretations of 4-top searches

- JHEP 1911 (2019) 082: <u>link</u>
- See also talk from Andrea Castro: <u>link</u>
- 35.8 fb⁻¹, 1l and 2l (OS) final states with additional jets.
- Selection based on additional BDTs trained on event-level kinematics (single lepton BDT shown on right).
- Reinterpretation of cross section upper limit: provide constraints on EFT operators contributing to 4-top production:

Operator	Expected C_k/Λ^2 (TeV $^{-2}$)	Observed (TeV $^{-2}$)
\mathcal{O}^1_{tt}	[-1.5, 1.3]	[-2.1, 2.0]
\mathcal{O}_{QQ}^1	[-1.5, 1.3]	[-2.2, 2.0]
\mathcal{O}^1_{Qt}	[-2.4, 2.4]	[-3.5, 3.5]
\mathcal{O}_{Qt}^8	[-5.6, 4.3]	[-7.9, 6.6]

New interactions with $t\bar{t} \& tW \rightarrow ll$

- Eur. Phys. J. C 79 (2019) 886: <u>link</u>
- 35.9 fb $^{-1}$, OS dilepton + b-jets.
- Neural network trained to separate tt
 in and
 tW events ⇒ exploits sensitivity of tW
 to NP (top right).
- Core EFT approach: tī & tW processes are simulated to detector level under presence of new effective interactions.
 - Fitted values, correlations, and uncertainties of WCs determined directly from data.
- Constraints on Wilson coefficients:
 - Wtb coupling: $C_{\phi q}^{(3)}$, C_{tW}
 - ullet Triple gluon strength operator: $C_{
 m g}$
 - Chromomagnetic dipole moment: C_{tg}
 - FCNC: C_{ug} , C_{cg}

Top quark polarization and tt spin correlations

- Phys. Rev. D 100 (2019) 072002: <u>link</u>
- 35.9 fb $^{-1}$, OS dilepton + b-jets final states.
- Expand polarization vectors and spin-correlation matrix into orthonormal basis & probe through differential cross section measurements.
 - Deviations from SM prediction would be indications of BSM effects.
- EFT Interpretation: derive constraints on dim-6 operators involved in $t\bar{t}$ production, including $O_{tG} \implies$ anomalous chromomagnetic dipole moment (CMDM).
- Express corresponding WC, C_{tG}, in terms of polarization and spin correlation coefficients.
- Predicted yields parametrized as a function of $C_{{\rm t}G}$ and best-fit value and uncertainties are extracted from a χ^2 fit to data.

Novel EFT Approach with $t\bar{t} + X \rightarrow multilepton$ (1/3)

- CMS PAS TOP-19-001: new result!
- Analysis targets single top and tt
 production in association with W, Z, or H, requiring b-jets and multiple leptons: 2I (SS), 3I and 4I in final states.
- Novel approach to EFT: rather than search for specific processes, parametrize
 predicted event yields for all relevant processes in terms of all relevant WCs.
 - ullet Examine event yields as a function of $N_{\mathrm{leptons}}, N_{\mathrm{jets}}$, and $N_{\mathrm{b-jets}}$: different composition of underlying physics processes in each category \Longrightarrow sensitivity to a wide range of EFT operators!

Novel EFT Approach with $t\bar{t} + X \rightarrow multilepton$ (2/3)

- CMS PAS TOP-19-001: new result!
- EFT Parametrization: yields for processes with prompt leptons taken from simulation & parametrized as a function of WCs for all relevant EFT operators for that process. Processes with non-prompt leptons predicted with extrapolation from control regions.
- Can express matrix element as sum of SM and BSM contributions:

$$\mathcal{M} = \mathcal{M}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}, \tag{2}$$

• and this can be translated to predicted event yields for each category which are a function of the 16 relevant WCs: $N=N(\vec{c}/\Lambda^2)$.

Novel EFT Approach with $t\bar{t} + X \rightarrow multilepton$ (3/3)

- CMS PAS TOP-19-001: new result!
- Two scenarios for fitting a given WC:
 - All other WCs treated as unconstrained nuisance parameters (profiled).
 - 2. All other WCs set to SM values of 0.
- $\bullet\,$ For some WCs, a 2σ interval is not clearly defined.
 - Some have multiple, nearly degenerate minima due to quadratic nature of WCs.
- In these cases, scans of pairs of WCs are performed (examples on right).
- Takeaway: novel approach to EFT pioneered through this analysis!
 - Multilepton final state serves as an illustration of its power, but is widely applicable to many other physics processes.

Summary of EFT Interpretations

- Wide variety of analyses sensitive to various WCs of EFT operators.
- Summary of constraints on WCs for top-scalar boson operators shown below:
 - Corresponding summary plot for top-fermion operators in backup.

Results at CMS: Flavor-Changing

Neutral Currents

Flavor-Changing Neutral Currents

A potential "discovery story" with FCNC at the LHC [1]:

- \bullet FCNC forbidden at tree-level and heavily suppressed in loop diagrams due to GIM mechanism: $\mathcal{O}(10^{-15})$
- t

 Zq and t

 Hq FCNC well-motivated by multiple BSM theories, including
 warped extra dimensions, composite Higgs scenarios, and flavor-violating 2HDM
 models.
- Branching ratios for t \rightarrow Zc (Hc) could be on the order of 10^{-5} (10^{-4}).
 - \bullet Some models may even result in rates for other FCNC below LHC sensitivity, making t \to Zc and \to Hc important channels to study.

[1] https://arxiv.org/pdf/1311.2028.pdf

Flavor-Changing Neutral Currents

$\mathsf{t} \to \mathsf{Zq}\;\mathsf{FCNC}$

• CMS PAS TOP-17-017: link

- 35.9 fb⁻¹, require final states with exactly 3 leptons (one OSSF pair) and 1–3 jets.
- Search for t → Zq decays in single top and t̄t events, with separate BDTs targeting each production mode.
- Control region targeting WZ and non-prompt lepton events (dominant backgrounds) to constrain background prediction.
- Observed (expected) exclusion limits:

• \mathcal{B} (t \rightarrow Zc): 0.045% (0.037%)

• \mathcal{B} (t \rightarrow Zu): 0.024% (0.015%)

$\mathsf{t} \to \mathsf{Hq}\;\mathsf{FCNC}$

- JHEP 06 (2018) 102: <u>link</u>
- 35.9 fb⁻¹, search in H \rightarrow bb decay mode.
 - Dominant systematic uncertainties due to b-tagging – up to 30%.
- Search for t → Hq decays in single top and tt̄ events, with BDT-based approach.
 - Signal regions binned in $N_{\rm jets}$ and $N_{\rm b-jets}$
- Observed/expected exclusion limits on \mathcal{B} (t \rightarrow Hq):
 - \mathcal{B} (t \rightarrow Hc): 0.047% (0.044%)
 - \mathcal{B} (t \rightarrow Hu): 0.047% (0.034%)

Landscape of FCNC Limits

- The "discovery story" mentioned earlier [1] not yet ruled out by current LHC limits.
- Results with the full Run 2 dataset will shed more light on the situation.
 - $\begin{tabular}{ll} \bullet & Analyses for t \to Hq FCNC in \\ the multilepton, bb, and $\gamma\gamma$ \\ decay channels of the H should \\ provide very competitive limits. \\ \end{tabular}$

[1] https://arxiv.org/pdf/1311.2028.pdf

Note: updated version of Fig 6.4 in FCC CDR: link.

Conclusions & Future Prospects

Conclusions & Future Prospects

- Despite well-founded motivations for the presence of physics beyond the SM, has not yet been found at the LHC.
 - \bullet Perhaps the scale of new physics is beyond LHC's energy reach: $\Lambda_{\rm NP} > E_{\rm LHC}$?
- Motivates searching for subtle signatures of NP that may still be accessible at LHC:
 - Modified top couplings: search for small deviations from SM predictions in differential cross-section measurements, searches for SM processes.
 - 2. Flavor-changing neutral currents: only allowed in SM through heavily suppressed loop diagrams with rates of $\mathcal{O}(10^{-15}) \Longrightarrow$ any evidence of FCNC would be a clear indication of NP.
- Effective field theory interpretations cast results in model-independent way.
- Results from CMS are in agreement with SM

 no hints of NP yet.
- Despite no sign of NP, we are confident there must be physics beyond the Standard Model:
 - Motivates need to continue searching for NP in modified top couplings and flavor-changing neutral currents with full Run 2 dataset and beyond.

Backup

EFT + BSM interpretations of 4-top searches

- Eur. Phys. J. C 80, 2 (2020) 75: <u>link</u>
- 137 fb⁻¹, targeting 2l (SS) and 3l final states.
- Both cut-based and BDT-based analyses are performed.
- See also talk from Andrea Castro: <u>link</u>

- BSM Interpretations: scenarios in which a new heavy particle decays to a tt pair
 - 1. Limits on the top quark coupling to new scalar (ϕ) and vector (Z') particles as a function of mass (backup).
 - Limits on cross section for models of a heavy scalar/pseudoscalar, in the context of Two-Higgs Doublet Models and simplified dark matter scenarios.

EFT + BSM interpretations of 4-top searches

JHEP 1911 (2019) 082: link

Top quark polarization and tt spin correlations

- Phys. Rev. D 100 (2019) 072002: <u>link</u>
- 35.9 fb $^{-1}$, OS dilepton + b-jets final states.
- Top quark lifetime ($\sim 10^{-25} {\rm s}$) is four orders of magnitude smaller than top quark spin decorrelation timescale ($\sim 10^{-21} {\rm s}$) \Longrightarrow spin information preserved in angular distributions of decay products.
- Expand polarization vectors and spin-correlation matrix into orthonormal basis & probe through differential cross section measurements.
 - Deviations from SM prediction would be indications of BSM effects!
- Also sensitive to dim-6 operators involved in tt
 production (see backup).
 - Look for anomalous couplings!

Summary of EFT Interpretations: Fermions

Summary of EFT Interpretations: Scalar Bosons

$\mathsf{t} \to \mathsf{gq} \; \mathsf{FCNC}$

- JHEP 02 (2017) 028: <u>link</u>
- 25 fb $^{-1}$ data from $\sqrt{s}=7,8~{\rm TeV}$
- ullet Search for anomalous Wtb coupling and $t \to gq$ FCNC using NN approach.
- Observed (expected) limits on $t \rightarrow gq$:

• t \rightarrow gu: $2.0(2.8) \times 10^{-5}$

• $t \to gc: 4.1(2.8) \times 10^{-4}$

$t \rightarrow \gamma q FCNC$

- JHEP 06 (2018) 102: <u>link</u>
- 20 fb⁻¹ data from $\sqrt{s} = 7.8$ TeV
- Dominant W + (γ) + jets backgrounds estimated with data-driven procedure, using a NN to separate the W + jets and W + γ + jets processes.
- $\bullet~$ BDTs (below) trained to separate t $\to \gamma {\rm q}$ FCNC from backgrounds.
- Observed (expected) limits on t $\rightarrow \gamma q$:
 - $t \to \gamma u$: $1.9(1.3) \times 10^{-4}$
 - $t \to \gamma c: 2.0(1.7) \times 10^{-3}$

FCNC and EFT interpretations in top quark events at CMS (July 29, 2020)