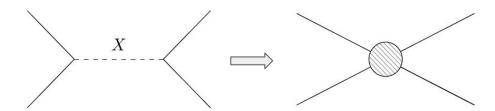


Enhancing fits of SMEFT Wilson coefficients in the top-quark sector

Stefan Bißmann, Johannes Erdmann, <u>Cornelius Grunwald</u>, Gudrun Hiller, Kevin Kröninger

SMEFT - Standard Model Effective Field Theory

effective extension of the SM Lagrangian for energies much higher than the SM scale:


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \underbrace{\frac{1}{\Lambda} C^{(5)} O^{(5)}}_{\text{neutrino masses}} + \underbrace{\frac{1}{\Lambda^2} \sum_{i} C_i^{(6)} O_i^{(6)}}_{\text{BSM physics}} + \dots$$

 Λ : energy scale

 O_i : higher dimensional operators

 C_i : Wilson coefficients

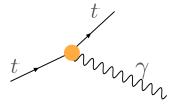
higher dimensional operators based on SM symmetries & constructed from SM fields

model-independent probes of BSM phenomena by constraining values of the Wilson coefficients

Constraining SMEFT Wilson coefficients in the top-quark sector

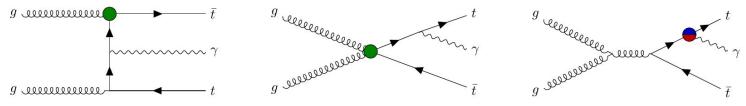
- many BSM models predict deviations in top quark couplings
- efforts ongoing to constrain Wilson coefficients of dimension-six operators affecting the top quark

two studies investigating aspects for enhancing SMEFT fits in the top quark sector:


1) including observables from B physics [Eur. Phys. J. C 80 (2020) 136]

2) impact of correlations between uncertainties [1912.06090]

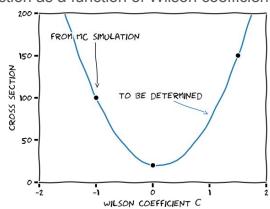
Combining measurements from top quark and B physics


- top quark related EFT operators also affect *B* physics processes
 - combine measurements of top quark & *B* physics observables in one fit to constrain Wilson coefficients

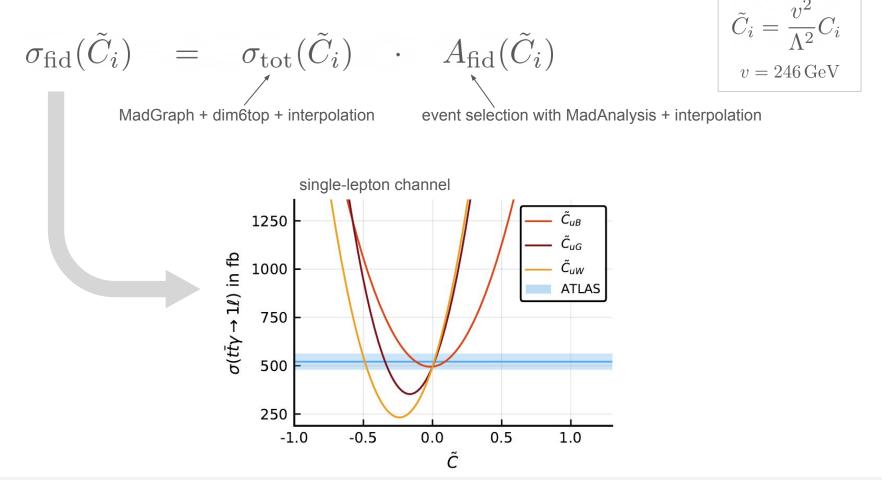
• example: top-quark photon coupling

Тор	В	
$tar{t}\gamma$ 7000000000000000000000000000000000000	$b \rightarrow s + \gamma$ $b \xrightarrow{W^-} s$	
production cross section	$\mathrm{BR}(\bar{B} \to X_s \gamma)$	

tty production cross section



• Operators affecting top-boson interaction:


$$O_{uG} = (\bar{q}\sigma^{\mu\nu}T^Au)\,\tilde{\varphi}G^A_{\mu\nu}\,,\quad O_{uB} = (\bar{q}\sigma^{\mu\nu}u)\,\tilde{\varphi}B_{\mu\nu}\,,\quad O_{uW} = (\bar{q}\sigma^{\mu\nu}\tau^Iu)\,\tilde{\varphi}W^I_{\mu\nu}$$

- consider fiducial cross section measurement by ATLAS @ 13TeV [Eur. Phys. J. C 79 (2019) 382]
- computation of BSM cross sections: MadGraph + dim6top UFO model
- interpolation using quadratic polynomial parametrization of cross section as a function of Wilson coefficients

$$\sigma = \underline{\sigma}^{\mathrm{SM}} + \frac{1}{\Lambda^2} \sum_i \underline{C}_i \underline{\sigma}_i^{\mathrm{interf.}} + \frac{1}{\Lambda^4} \sum_{i \leq j} \underline{C}_i \underline{C}_j \underline{\sigma}_{ij}^{\mathrm{BSM}}$$
sampling points parameters

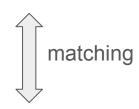
Parameterization of fiducial cross section

SMEFT vs. WET

Top-Physics: SMEFT

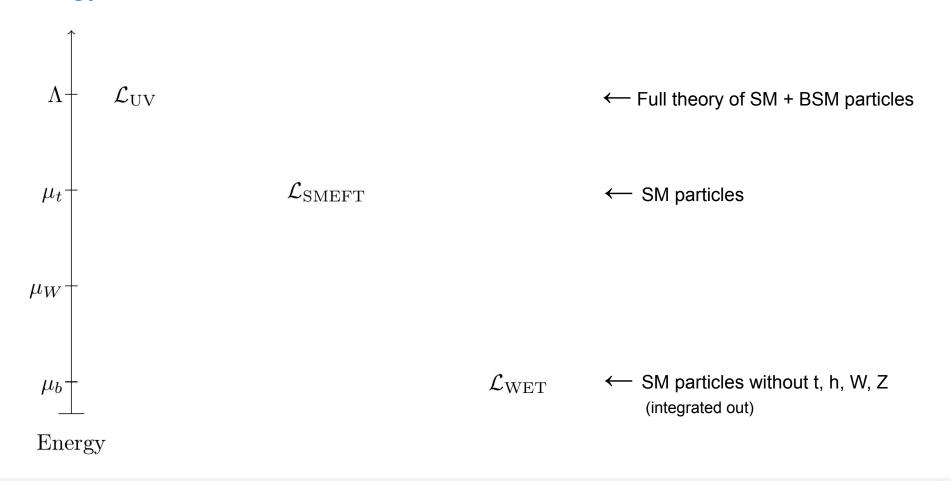
$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \mathcal{O}\left(\Lambda^{-4}
ight)$$

B-Physics: WET (Weak Effective Theory)

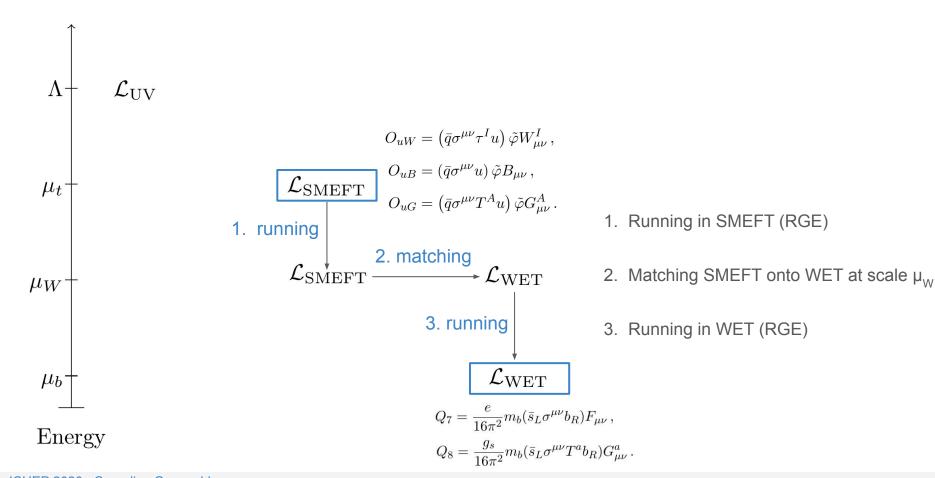

$$\mathcal{L}_{\text{WET}} = \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^8 \bar{C}_i Q_i$$

Operators contributing to $t\gamma$ -coupling:

$$O_{uW} = (\bar{q}\sigma^{\mu\nu}\tau^I u)\,\tilde{\varphi}W^I_{\mu\nu}\,,$$


$$O_{uB} = (\bar{q}\sigma^{\mu\nu}u)\,\tilde{\varphi}B_{\mu\nu}\,,$$

$$O_{uG} = (\bar{q}\sigma^{\mu\nu}T^A u)\,\tilde{\varphi}G^A_{\mu\nu}\,.$$



$$Q_7 = rac{e}{16\pi^2} m_b (\bar{s}_L \sigma^{\mu \nu} b_R) F_{\mu \nu} \,, \ Q_8 = rac{g_s}{16\pi^2} m_b (\bar{s}_L \sigma^{\mu \nu} T^a b_R) G^a_{\mu \nu} \,,$$

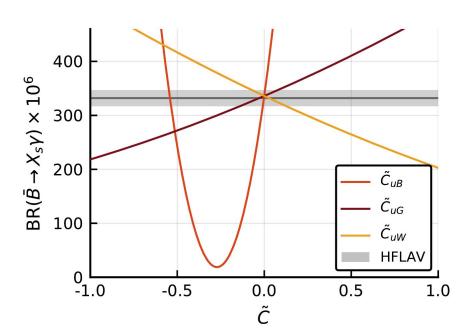
Energy scale

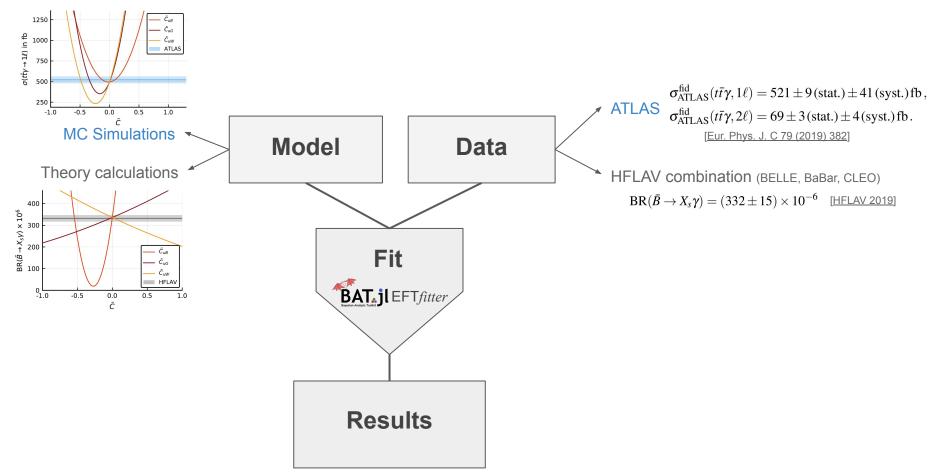
Matching & Running

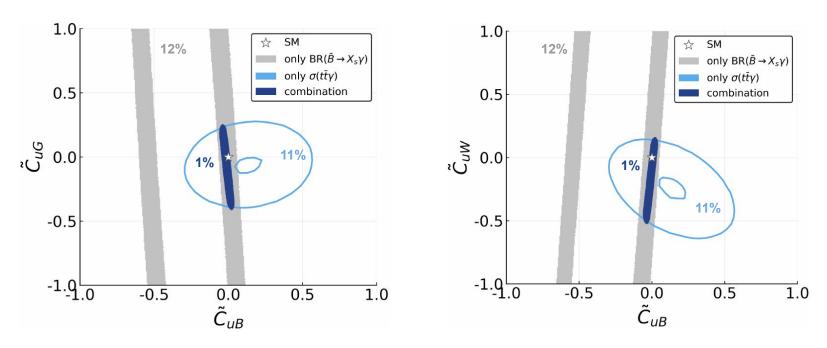
$BR(\bar{B} \to X_s \gamma)$

matching SMEFT onto WET:

$$\Delta C_7^{(0)} \sim \tilde{C}_{uW} A(x_t) + \tilde{C}_{uW}^* B(x_t) + \tilde{C}_{uB} C(x_t) + \tilde{C}_{uB}^* D(x_t)$$


$$\Delta C_8^{(0)} \sim \tilde{C}_{uW} E(x_t) + \tilde{C}_{uW}^* F(x_t) - 2 \frac{m_W}{v} \frac{(\tilde{C}_{uG} C(x_t) + \tilde{C}_{uG}^* D(x_t))}{\sqrt{4\pi\alpha_s(\mu_W)}}$$


calculation of BSM contributions is known in terms of **WET** operators [hep-ph/0609241, hep-ph/0104034]


$${
m BR}(\bar{B} \to X_s \gamma) = (332 \pm 15) \times 10^{-6}$$
 [HFLAV 2019]

How to constrain Wilson coefficients?

Combined fit: Top + B

smallest areas containing 90% posterior probability

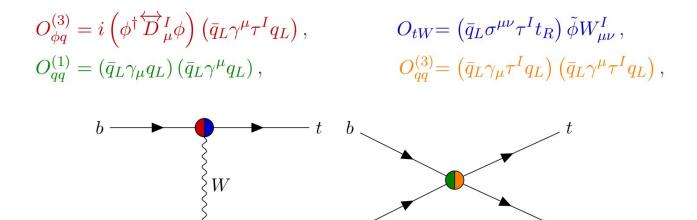
combination of top quark & B observables improves the constraints by up to a factor of 10

How to enhance SMEFT fits in the top-quark sector?

1) including observables from B physics [Eur. Phys. J. C 80 (2020) 136]

2) impact of correlations between uncertainties [1912.06090]

- global SMEFT fits usually include multiple measurements of several observables
- uncertainties of the included measurements are often correlated


problem: determining correlations between uncertainties is challenging, especially between different experiments ⇒ correlations are often neglected in SMEFT fits

Do correlations even matter in SMEFT fits?

study the influence of correlations on the results of a SMEFT fit

Setup of our study

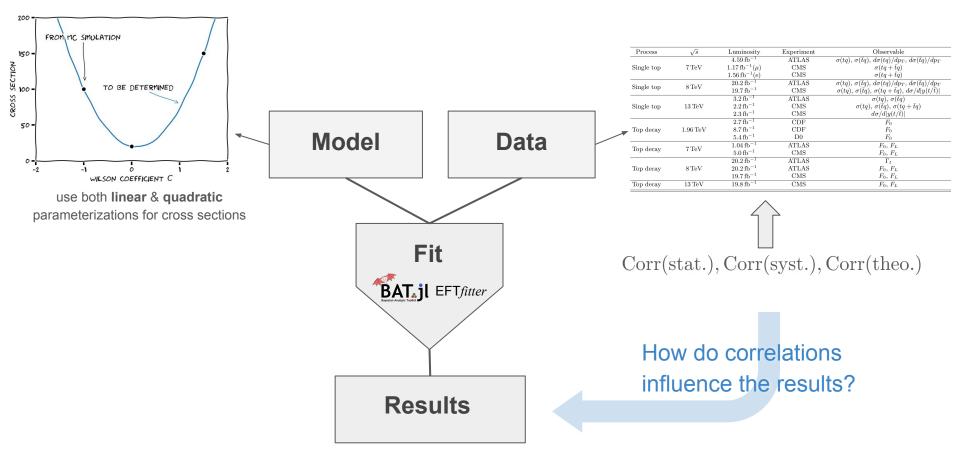
- observables: t-channel single-top quark production and from top-decay (W-helicities & top-width)
 - 4 dimension-six operators of interest:

3 independent parameters in the fit:

$$\tilde{C}_{\phi q}^{(3)},\; \tilde{C}_{tW},\; \tilde{C}_{qq}$$

Measurements included in the fit

55 measurements of 41 different observables:


	_	Observable	Experiment	Luminosity	\sqrt{s}	
	_	$\sigma(tq),\sigma(ar{t}q),d\sigma(tq)/dp_T,d\sigma(ar{t}q)/dp_T$	ATLAS	$4.59 \mathrm{fb}^{-1}$	V	
		$\sigma(tq+ar{t}q)$	CMS	$1.17{\rm fb}^{-1}(\mu)$	$7\mathrm{TeV}$	
		$\sigma(tq+ar{t}q)$	$_{\mathrm{CMS}}$	$1.56{\rm fb^{-1}(e)}$		
total & differentia	-	$\sigma(tq), \sigma(\bar{t}q), d\sigma(tq)/dp_T, d\sigma(\bar{t}q)/dp_T$	ATLAS	8 TeV $\frac{20.2 \text{fb}^{-1}}{19.7 \text{fb}^{-1}}$	20.2fb^{-1} $\Delta \text{TL} A$	
		$\sigma(tq),\sigma(\bar{t}q),\sigma(tq+\bar{t}q),d\sigma/d y(t/\bar{t}) $	CMS			
ATLA	- /	$\sigma(tq),\ \sigma(\overline{t}q)$	ATLAS	$3.2{\rm fb}^{-1}$		
	CMS $\sigma(tq), \ \dot{\sigma}(\bar{tq}), \ \dot{\sigma}(tq + \bar{t}q)$		CMS	$13 \mathrm{TeV}$ $2.2 \mathrm{fb}^{-1}$		
		$d\sigma/d y(t/ar{t}) $	CMS	$2.3 {\rm fb}^{-1}$		
	_	F_0	CDF		$\begin{array}{c} 2.7 \mathrm{fb^{-1}} \\ 1.96 \mathrm{TeV} & 8.7 \mathrm{fb^{-1}} \\ 5.4 \mathrm{fb^{-1}} \end{array}$	
		F_0	CDF			
		F_0	D0	$5.4 {\rm fb}^{-1}$		
	_ \	F_0,F_L	ATLAS	$7 { m TeV}$ $1.04 { m fb}^{-1}$ $5.0 { m fb}^{-1}$		
W-helicities & to		F_0,F_L	CMS			
ATLAS, CMS, C	_ /	Γ_t	ATLAS	$20.2{\rm fb^{-1}}$		
7 (1 L7 (0, 0 M) 0, 0 L		F_0,F_L	ATLAS	$20.2 \mathrm{fb^{-1}}$		
		F_0,F_L	CMS	$19.7{\rm fb^{-1}}$		
	_ /	F_0, F_L	CMS	$19.8 \mathrm{fb}^{-1}$	$13\mathrm{TeV}$	

al t-channel cross sections AS, CMS

p-width DF, D0

3 types of uncertainties: statistical, systematic, theory

Setup of the fit

Correlations

55x55 correlation matrix for each of the 3 uncertainty categories

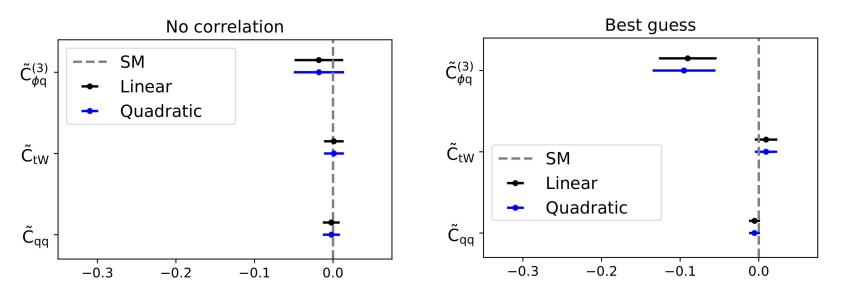
statistical correlations: given for bins of distributions, other statistical correlations assumed to vanish (independent events)

systematic & theory correlations: no information provided \$\display\$ "best guess" scenario with simplifying parametrization

best guess:

systematic correlations:

	$\sigma(tq)_7^{ m A}$	$\sigma(ar{t}q)_7^{ m A}$	$\sigma(tq)_8^{ m A}$	$\sigma(tq)_8^{\mathrm{C}}$	Γ_t
$\sigma(tq)_7^{ m A}$	1	$ ho_{ m sys}$	$rac{ ho_{ ext{sys}}}{2}$	0	0
$\sigma(\bar tq)_7^{ m A}$	$ ho_{ m sys}$	1	$rac{ ho_{ ext{sys}}}{2}$	0	0
$\sigma(tq)_8^{ m A}$	$rac{ ho_{ m sys}}{2}$	$rac{ ho_{ m sys}}{2}$	1	0	0
$\sigma(tq)_8^{\rm C}$	0	0	0	1	0
Γ_t	0	0	0	0	1 /

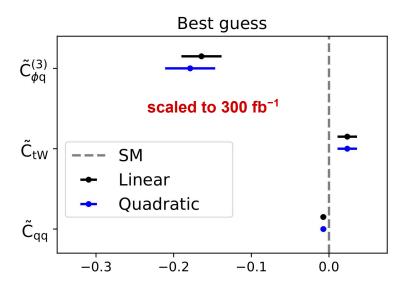

assumptions:

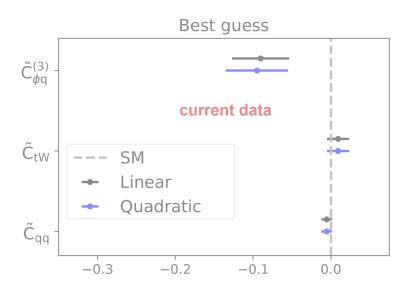
- same experiment & same energy \Rightarrow strong corr.
- same experiment & different energy ⇒ less strong corr.
- different experiments ⇒ uncorrelated

similar assumptions for theory correlations

$$\rho_{\rm sys} = 0.9, \quad \rho_{\rm th} = 0.9$$

Fit results with & without correlations

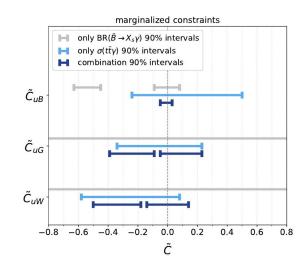

marginalized best fit values & smallest 95% intervals

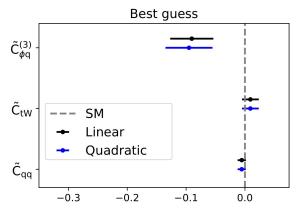

"best guess" correlations lead to significant deviations from SM for one of the Wilson coefficients

• varying values of $ho_{
m sys},
ho_{
m th}$: consistent behavior, larger correlations lead to stronger deviations

What about the future?

scaled statistical uncertainties to 300 fb⁻¹ (LHC Run 3):


if statistical uncertainties decrease, correlations can lead to even stronger deviations from the SM

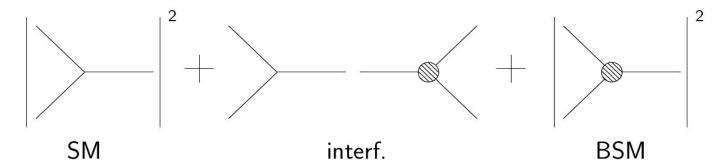

Summary & Conclusions

- first consistent fit of SMEFT Wilson coefficients using a combination of observables from top-quark and B physics
- combination leads to significant improvement of constraints
 - combination of observables from different energy scales are beneficial for global fits constraining top-quark related SMEFT Wilson coefficients

[Eur. Phys. J. C 80 (2020) 136]

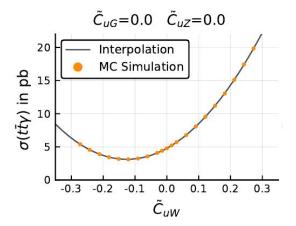
- SMEFT fit of single-top & top-decay measurements
- studied the influence of correlations by comparing a no-correlation scenario to a best guess correlation scenario
 - correlations matter, in the future even more [1912.06090]

Backup


EFT cross sections

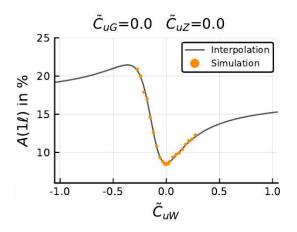
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_i C_i O$$

$$\sigma \propto |\mathcal{M}|^{2}$$

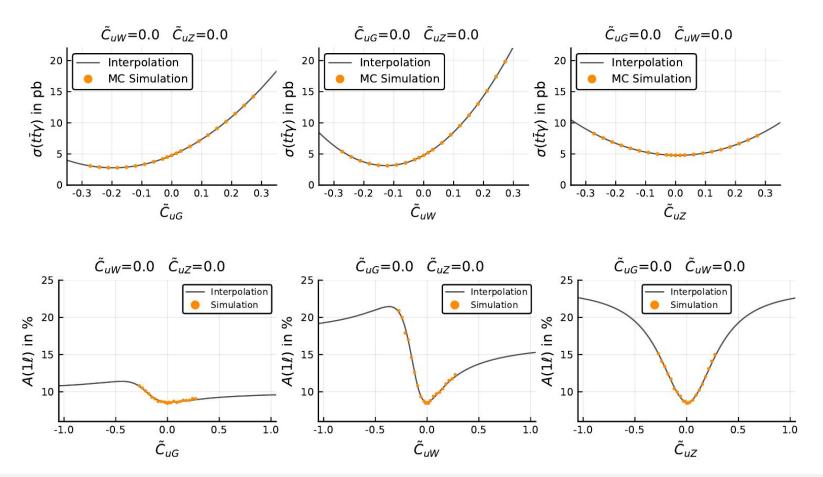

$$\sigma = \mathcal{M}^{\text{SM}} + \frac{1}{\Lambda^{2}} \sum_{i} C_{i} \mathcal{M}_{i}^{\text{BSM}}$$

$$\sigma = \sigma^{\text{SM}} + \frac{1}{\Lambda^{2}} \sum_{i} C_{i} \sigma_{i}^{\text{interf.}} + \frac{1}{\Lambda^{4}} \sum_{i \leq j} C_{i} C_{j} \sigma_{ij}^{\text{BSM}}$$

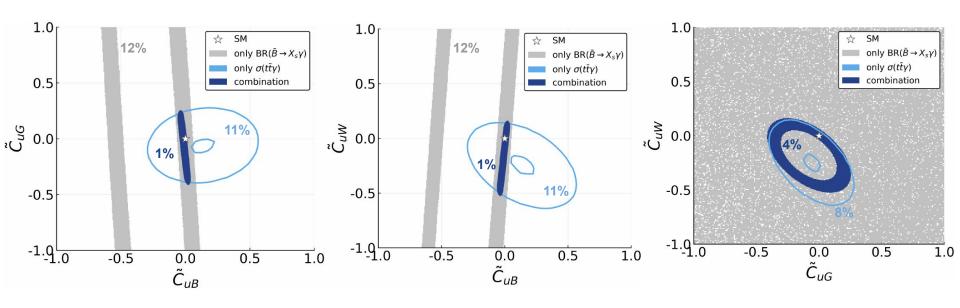
Dependence of fiducial cross section on Wilson coefficients


1) quadratic interpolation of total cross section:

different degrees of freedom in dim6top:

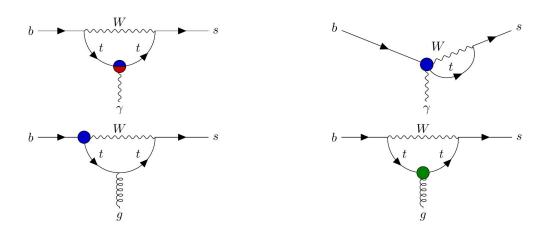

$$\tilde{C}_{uG},\ \tilde{C}_{uW},\ \tilde{C}_{uB} \quad \stackrel{\tilde{C}_{uZ} = \cos\theta_W \tilde{C}_{uW} - \sin\theta_W \tilde{C}_{uB}}{\longleftarrow} \quad \tilde{C}_{uG},\ \tilde{C}_{uW},\ \tilde{C}_{uZ} = \cos\theta_W \tilde{C}_{uW} - \sin\theta_W \tilde{C}_{uB}$$

2) interpolation of fiducial acceptance:



$$A_{\mathrm{fid}} = \frac{\sigma_{\mathrm{fid}}}{\sigma_{\mathrm{tot}}} = \frac{A^{\mathrm{SM}} \sigma^{\mathrm{SM}} + \sum_{i} \tilde{C}_{i} A_{i}^{\mathrm{interf}} \sigma_{i}^{\mathrm{interf.}} + \sum_{i \leq j} \tilde{C}_{i} \tilde{C}_{i} A_{ij}^{\mathrm{BSM}} \sigma_{ij}^{\mathrm{BSM}}}}{\sigma^{\mathrm{SM}} + \sum_{i} \tilde{C}_{i} \sigma_{i}^{\mathrm{interf.}} + \sum_{i \leq j} \tilde{C}_{i} \tilde{C}_{j} \sigma_{ij}^{\mathrm{BSM}}}}$$

Interpolation of cross section & fiducial acceptance

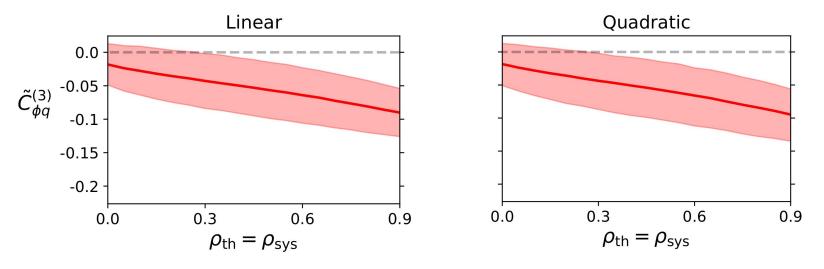

Combined fit: Top + B

smallest areas containing 90% posterior probability

$BR(\bar{B} \to X_s \gamma)$

$$\Delta C_7^{(0)} \sim \tilde{C}_{uW} A(x_t) + \tilde{C}_{uW}^* B(x_t) + \frac{\tilde{C}_{uB}}{C_{uB}} C(x_t) + \frac{\tilde{C}_{uB}^*}{C_{uB}} D(x_t)$$
$$\Delta C_8^{(0)} \sim \tilde{C}_{uW} E(x_t) + \tilde{C}_{uW}^* F(x_t) - 2 \frac{m_W}{v} \frac{(\tilde{C}_{uG} C(x_t) + \tilde{C}_{uG}^* D(x_t))}{\sqrt{4\pi\alpha_s(\mu_W)}}$$

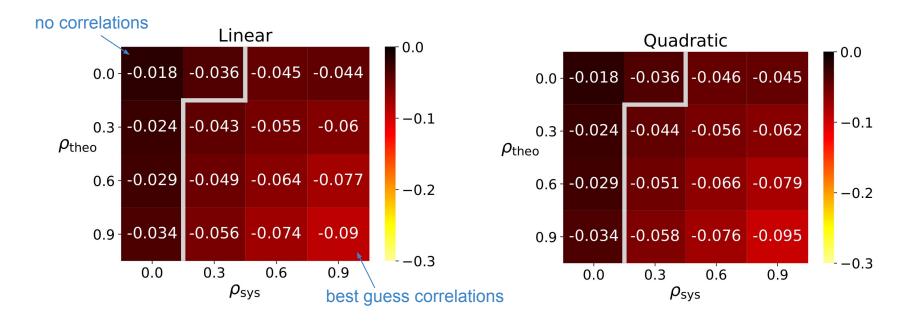
$$O_{uG} = (\bar{q}\sigma^{\mu\nu}T^A u)\,\tilde{\varphi}G^A_{\mu\nu}\,,\quad O_{uB} = (\bar{q}\sigma^{\mu\nu}u)\,\tilde{\varphi}B_{\mu\nu}\,,\quad O_{uW} = (\bar{q}\sigma^{\mu\nu}\tau^I u)\,\tilde{\varphi}W^I_{\mu\nu}$$


Correlations of best guess scenario

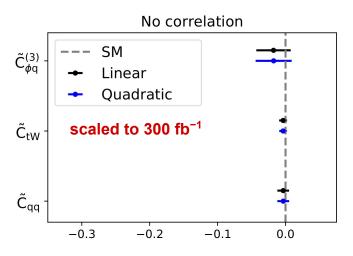
systematic correlations:

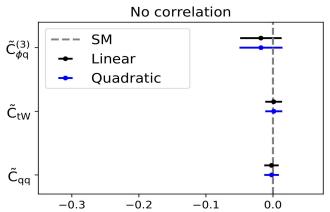
theory correlations:

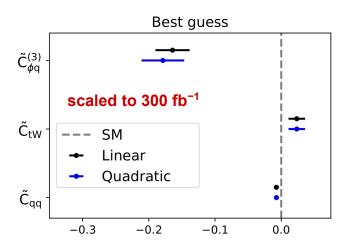
-	$\sigma(tq)_7^{ m A}$	$\sigma(\bar{t}q)_7^{ m A}$	$\sigma(tq)_8^{ m A}$	$\sigma(tq)_8^{\mathrm{C}}$	Γ_t .
$\sigma(tq)_7^{ m A}$	\int 1	$ ho_{ m th}$	$rac{ ho_{ ext{th}}}{2}$	$rac{ ho_{ ext{th}}}{2}$	0
$\sigma(ar{t}q)_7^{ m A}$	$ ho_{ m th}$	1	$rac{ ho_{ ext{th}}}{2}$	$\frac{ ho_{ m th}}{2}$	0
$\sigma(tq)_8^{ m A}$	$rac{ ho_{ ext{th}}}{2}$	$rac{ ho_{ ext{th}}}{2}$	1	$ ho_{ m th}$	0
$\sigma(tq)_8^{ m C}$	$rac{ ho_{ ext{th}}}{2}$	$rac{ ho_{ m th}}{2}$	$ ho_{ m th}$	1	0
Γ_t	0	0	0	0	1 /

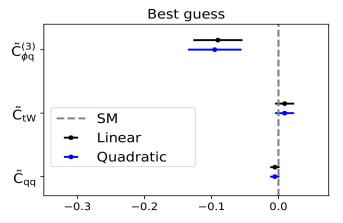

Varying the correlation coefficients

marginalized best fit value (line) & 95% interval (band)


vary the correlation coefficients for theory and systematic correlations of the "best guess" scenario


Varying the correlation coefficients




- central values of $\tilde{C}_{\phi q}^{(3)}$ from a marginalized fit
- below and right of grey line: deviations from SM more than 2σ

Future vs. Current Data

