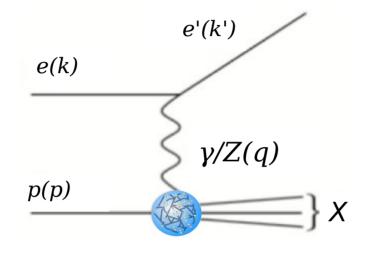
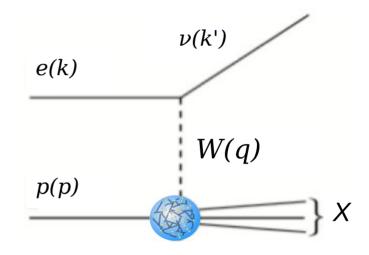
Top and electroweak physics at LHeC

D. Britzger for the LHeC and FCC-eh Study Group

ICHEP 2020, Prague, Czech Republic Virtual conference 31.07.2020

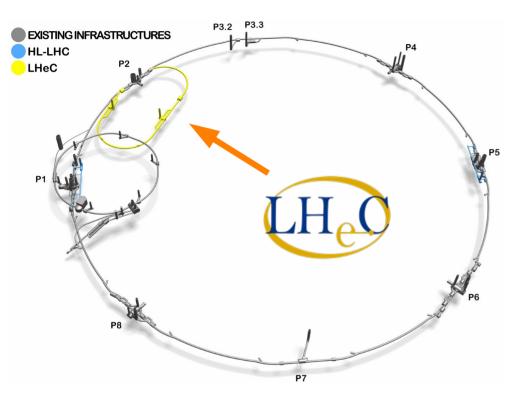




Deep-inelastic electron-proton scattering

Neutral current scattering $ep \rightarrow e'X$

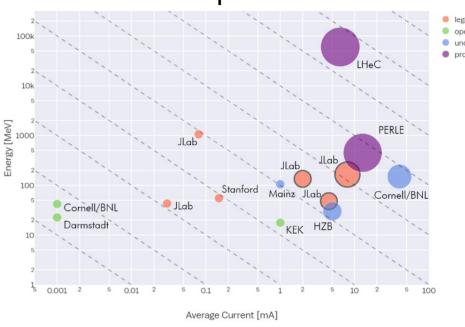
Charged current scattering $ep \rightarrow \nu_{\rho} X$



Deep-inelastic electron-proton scattering mediated in spacelike regime, by γ , γZ , Z or W-boson exchange

Direct probe the structure of the proton → bound together by QCD dynamics

-> Ideal QCD and Electroweak laboratory


Future electron-proton collider at CERN: LHeC

Electron ring attached to HL-LHC

- Energy recovery linac (ERL): $E_e = 60 \text{ GeV}$ (or 50 GeV)
- ESPPU: ERL is a "high-priority future initiative" for CERN

ERL "landscape"

LHeC

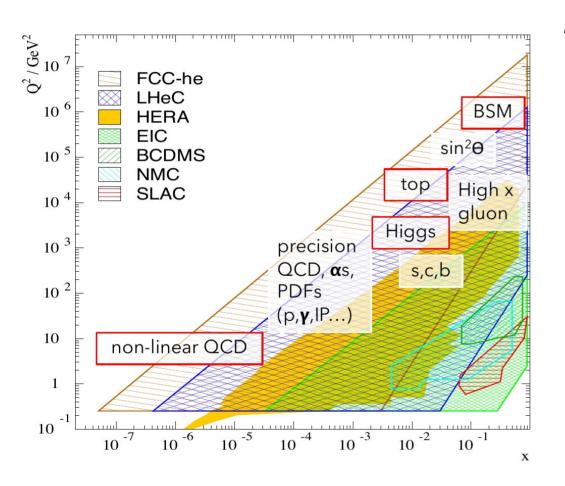
- √s ~ 1.3 TeV
- Polarisation up to $P_e \sim 80\%$
- Up to 1 ab-1 integrated luminosity

Update of the LHeC CDR 2020

Yesterday on arXiv

- Update of the CDR
- 373 pages about
 - Partonic structure of the proton
 - QCD studies, α_s, low-x, diffraction
 - Electroweak and top-quark physics
 - Nuclear physics
 - Higgs in DIS
 - BSM
 - Impact on the HL-LHC
 - Accelerator (Energy recovery linac)
 - PERLE facility
 - LHeC Detector

CERN-ACC-Note-2020-0002 Geneva, July 28, 2020


The Large Hadron-Electron Collider at the HL-LHC

LHeC Study Group

To be submitted to J. Phys. G

LHeC kinematic plane

LHeC

- Rich physics program at all scales
- See further talks:

BSM G. Azuelos

Higgs U. Klein

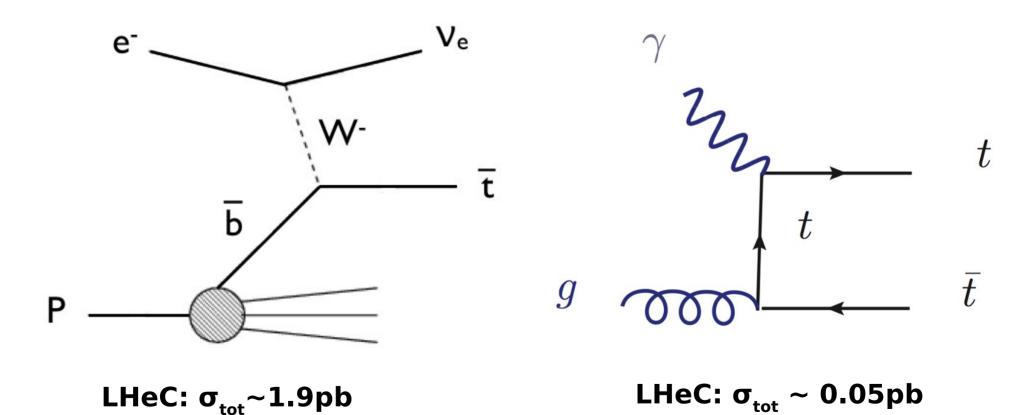
Heavy Ion H. Mäntysaari

QCD C. Gewlan

Detector Y. Yamazaki

Top and EW physics

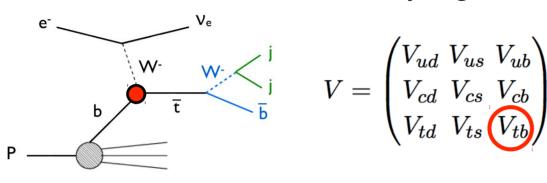
- high Q² is important
- high luminosity is important
 - → Intense electron beam from ERL Talks on ERL


• LHeC: B. Holzer

PERLE: B. Hounsell

Top quark production in ep

CC DIS single-top quark production


NC (yp) top-quark pair production

Other channels are: top-pair in DIS (~0.02pb), single-top in DIS and yp

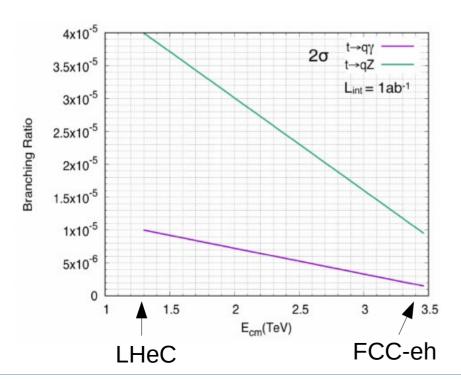
|V_{th}| in CC single-top production

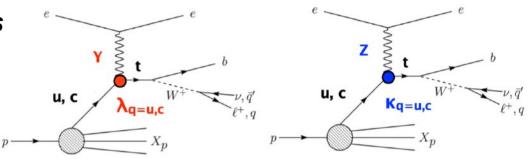

Limits on anomalous Wtb couplings

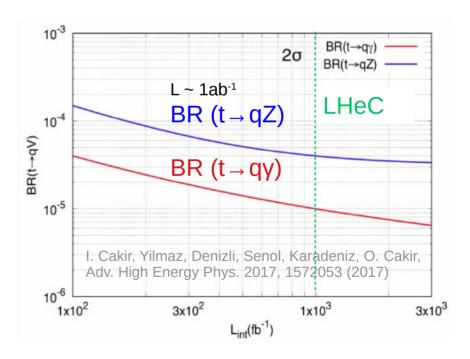
- Fully hadronic channel
- cut-based analysis with backgrounds using Delphes

Estimated precision on V_{tb}

- V_{tb}: up to 1% precision (with L=100 fb⁻¹)
- Presently best LHC measurement: ~7%




See: S. Dutta, et al. Eur. Phys. J. C75 (2015) 577

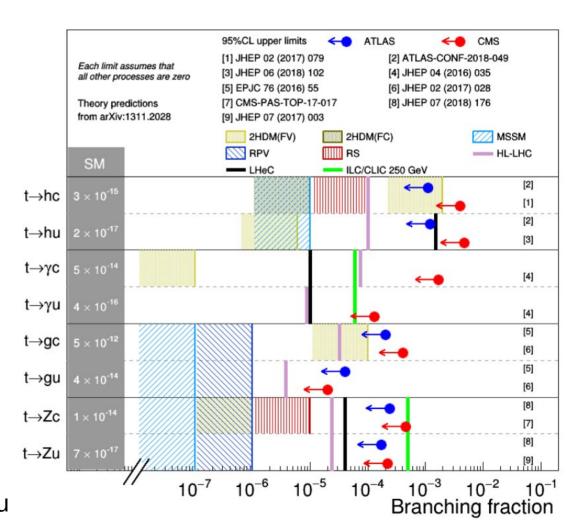

Search for anomalous FCNC

t-quark flavor changing neutral currents

- → Highly suppressed in SM
- Study tqy and tqZ effective FCNC
- Expected limits vs. √s and int. luminosity

Top quark branching fractions

Top quark branching fractions


- Searches for FCNC
- 95% C.L.

Compare future experiments

- LHeC
- HL-LHC (3000 fb-1)
- ILC/CLIC
- + various theory predictions

pp and ep

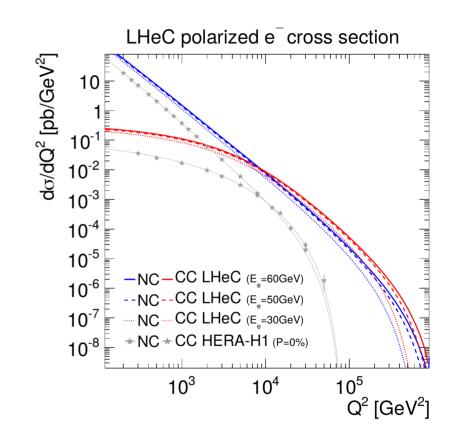
- LHeC is competitive... and complementary
- See also talk by U. Klein on t→hu

Electroweak physics in inclusive DIS

Inclusive DIS (neutral-current)

$$\frac{d^2 \sigma^{\text{NC}}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2^{\pm}(x, Q^2) \mp Y_- x \tilde{F}_3^{\pm}(x, Q^2) - y^2 \tilde{F}_L^{\pm}(x, Q^2) \right]$$

$$\tilde{F}_2^{\pm} = F_2 - (g_V^e \pm P_e g_A^e) \varkappa_Z F_2^{\gamma Z} + \left[(g_V^e g_V^e + g_A^e g_A^e) \pm 2 P_e g_V^e g_A^e \right] \varkappa_Z^2 F_2^Z$$


$$\left[F_2, F_2^{\gamma Z}, F_2^Z \right] = x \sum_q \left[Q_q^2, 2 Q_q g_V^q, g_V^q g_V^q + g_A^q g_A^q \right] \left\{ q + \bar{q} \right\}$$

On-shell scheme
$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

$$\varkappa_{Z}(Q^{2}) = \frac{Q^{2}}{Q^{2} + m_{Z}^{2}} \frac{1}{4\sin^{2}\theta_{W}\cos^{2}\theta_{W}}$$

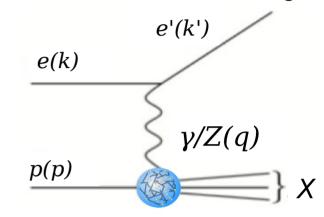
$$\begin{array}{rcl} g_A^f &=& \sqrt{\rho_{\mathrm{NC},f}} \, I_{\mathrm{L},f}^3 \,, \\ g_V^f &=& \sqrt{\rho_{\mathrm{NC},f}} \, \left(I_{\mathrm{L},f}^3 - 2Q_f \, \kappa_f \, \sin^2\!\theta_W \right) \end{array}$$

Independent SM paramters: α , m_Z , m_W + PDFs

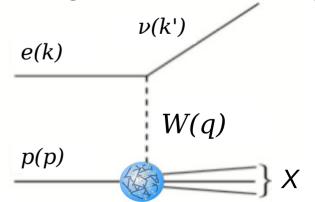
Electroweak physics

Simulated NC and CC DIS data

Source of uncertainty	Size of uncertainty	Uncertainty on cross section	
		$\Delta\sigma_{ m NC}$	$\Delta\sigma_{ m CC}$
Scattered electron energy scale $\Delta E_e'/E_e'$	0.1 %	0.1-1.7%	_
Scattered electron polar angle	$0.1\mathrm{mrad}$	0.1-0.7%	_
Hadronic energy scale $\Delta E_h/E_h$	0.5%	0.1-4%	1.0-8.6%
Calorimeter noise (only $y < 0.01$)		0.0-1.1%	included above
Radiative corrections		0.3%	_
Photoproduction background $(y > 0.5)$	1%	0.0 or $1.0%$	_
Uncorrelated uncertainty (efficiency)		0.5%	0.5%
Luminosity uncertainty (normalization)		1.0%	1.0%

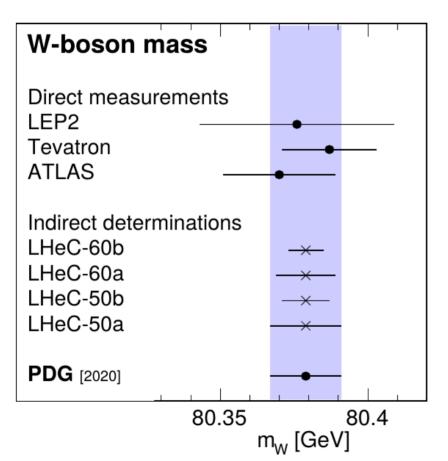

- Luminosity of 1 ab⁻¹ expected
- Full set of systematic uncertainties

In the following


perform PDF determination + electroweak parameters

→ see also talk by C. Gwenlan on PDFs

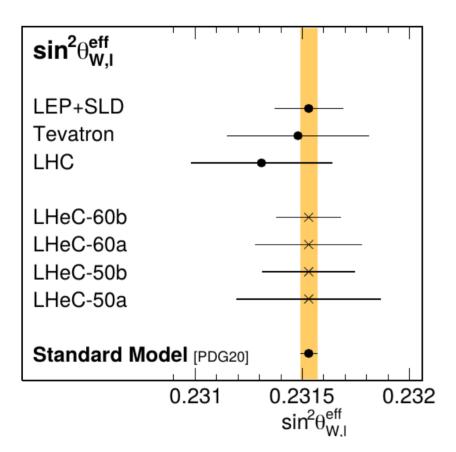
Neutral current scattering



Charged current scattering

Expectations: m_w + PDF

Fit W-boson mass together with PDFs


Scenario	E_e	Uncorrelated uncertainty
LHeC-50a	$50\mathrm{GeV}$	0.5%
LHeC-50b	$50\mathrm{GeV}$	0.25%
LHeC-60a	$60\mathrm{GeV}$	0.5%
$\rm LHeC\text{-}60b$	$60\mathrm{GeV}$	0.25%

Results

$$\delta m_W = \pm 6$$
 MeV (LHeC-60b)
 $\delta m_W = \pm 12$ MeV (LHeC-50a)
 $(= \pm 9_{\rm exp} \pm 8_{\rm PDF}$ MeV)

- Indirect determination of m_w
- Complementary to 'direct' measurements
- Smallest uncertainties from a single experiment

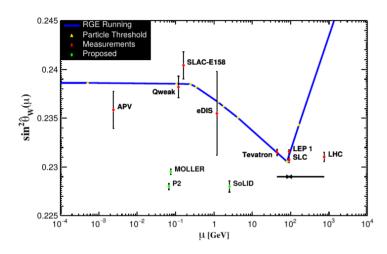
The weak mixing angle

Weak mixing angle

 in NC vector couplings only (both: quarks and electron)

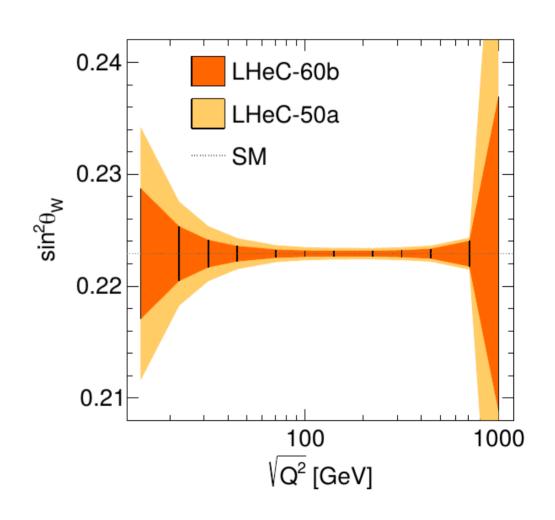
$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \, \kappa_f \, \sin^2 \theta_W \right)$$

$$\sin^2\theta_W + PDF$$
 fit


- Compare to Z-pole data (mostly 'combined' results)
- Most precise single measurement possible
- Note: need theory to map $\sin^2\theta_w$ to effective leptonic weak mixing angle

$$\Delta \sin^2 \theta_W \text{ (LHeC-50a)} = \pm 0.00028_{(exp)} \pm 0.00019_{(PDF)} = \pm 0.00034_{(tot)}$$
 $\Delta \sin^2 \theta_W \text{ (LHeC-60b)} = \pm 0.00014_{(exp)} \pm 0.00006_{(PDF)} = \pm 0.00015_{(tot)}$

Running of the weak mixing angle


Running in MSbar scheme in

links low-E and high-E PV data

We studied on-shell scheme

- Fit 12 values of $\sin^2\theta_w$ + PDFs
- $sin^2\theta_w$ single parameter in OS
- Per mille uncertainties in
 25 <Q < 700 GeV in spacelike region

Beyond the tree level

At leading order

Three independent input parameters

$$d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W)$$
 and $d\sigma_{CC} = d\sigma_{CC}(\alpha, m_Z, m_W)$

Beyond the leading order

higher order corrections

$$d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, m_t, m_H, \ldots)$$

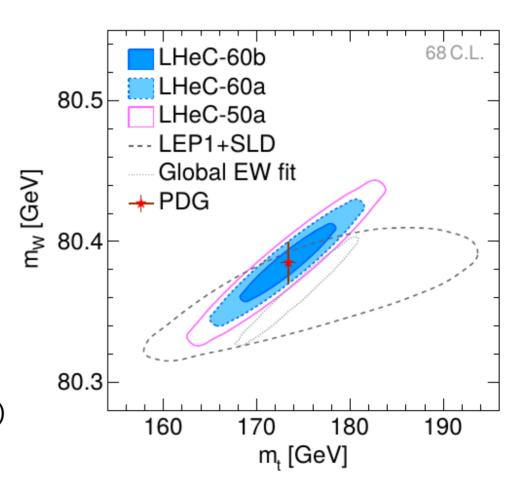
Generic parameterisations of virtual corrections

$$d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, \dots, v_f, a_f)$$

 $d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, \dots, \rho, \kappa)$
 $d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, \dots, S, T, U)$

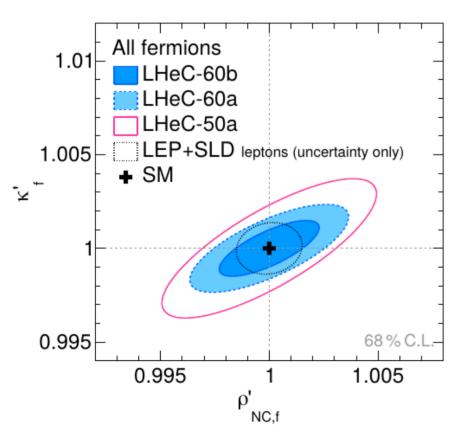
Top-quark mass through EW correction

Higher order corrections


- Dominant term ρ_t proportional to m_t^2/m_W^2
- Same relation as in Z-pole physics

LHeC

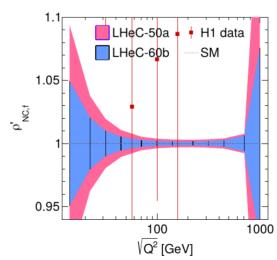
- similar sensitivity to 'global EW fit'
- Significantly better than LEP+SLD combination

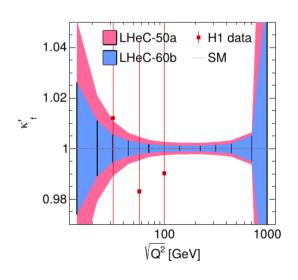

Top-mass alone

Δm_t ~ 1.1 GeV (including PDF uncert.)

Anomalous form factors

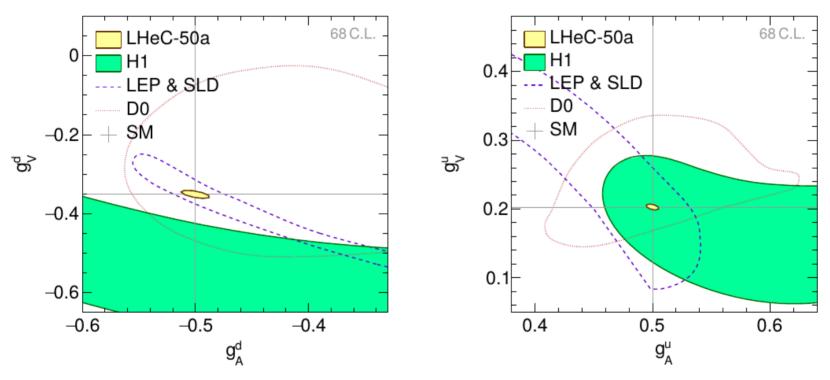
Generically parameterize new physics by modified couplings




• In SM: ρ' and $\kappa' = 1$

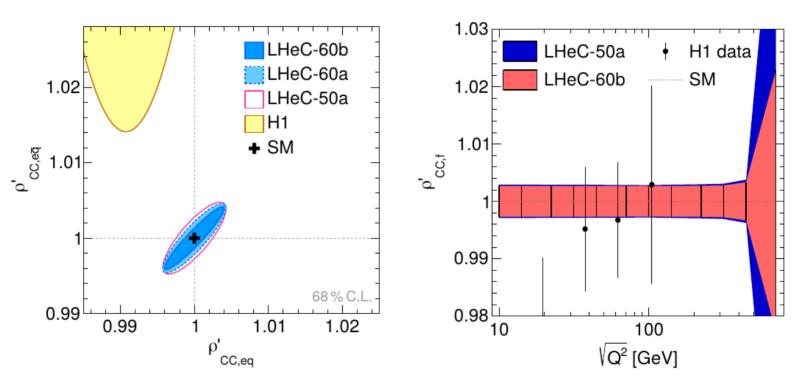
$$g_A^f = \sqrt{\rho'_{\text{NC},f}} \rho_{\text{NC},f} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho'_{\text{NC},f}} \rho_{\text{NC},f} \left(I_{\text{L},f}^3 - 2Q_f \kappa'_f \kappa_f \sin^2 \theta_W \right)$$


 Parameters may be Q² dependent (similar to running weak mixing angle)

Light quark NC couplings

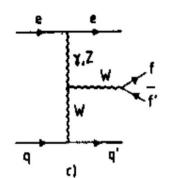
4-parameter fit plus PDFs



- LHeC improves by more than an order of magnitude
- u- and d- can be separated no sign ambiguity due to γZ terms

Charged currents

Study charged current cross sections in DIS


$$W_{2}^{-} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} U + (\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} \overline{D} \right)$$

$$xW_{3}^{-} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} U - (\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} \overline{D} \right)$$

Charged currents couplings not well studied experimentally – unique to LHeC

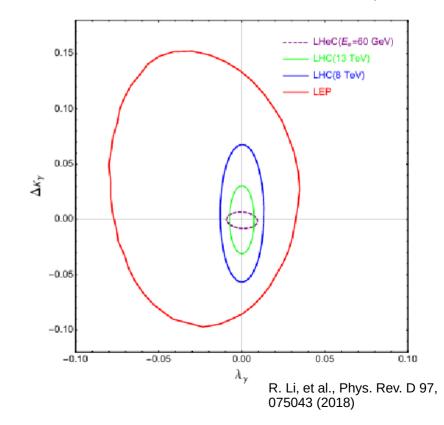
Direct W and Z production

Weak boson production @ LHeC

W production

$$\begin{split} e^-p &\to e^-W^+j, \quad e^-p \to e^-W^-j, \\ e^-p &\to \nu_e^-W^-j, \quad e^-p \to \nu_e^-Zj \end{split}$$

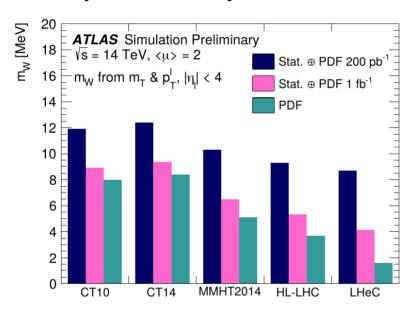
Z production $e^-p \rightarrow e^-Zj$,


Expected cross sections in e-p

Process	$E_e = 60 \mathrm{GeV}, E_p = 7 \mathrm{TeV}$
e^-W^+j	$p_T^e > 5 \mathrm{GeV}$ $1.60 \mathrm{pb}$
e^-W^-j	1.41 pb
$\nu_e^- W^- j$ $\nu_e^- Z j$	$0.956{ m pb} \ 0.502{ m pb}$
$e^{-}Zj$	$0.242{ m pb}$

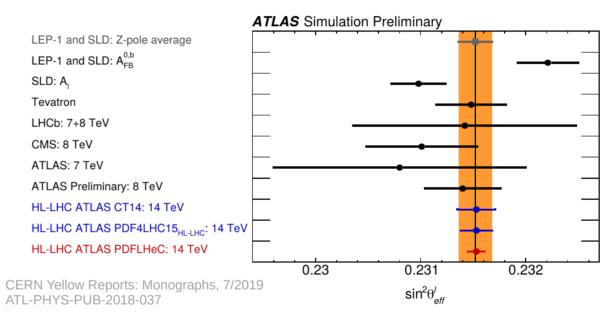
LHeC CDR 2020

Anomalous triple gauge couplings


- EFT approach for: λ_{v} and $\Delta \kappa_{v}$
- WWy coupling from e-p \rightarrow e- $\mu\nu_{\mu}j$

The impact of LHeC on HL-LHC

W-mass measurements in pp


Major uncertainty from PDFs

• Reduction of PDF uncertainty only feasible with LHeC PDFs $(\Delta m_W^{PDF}\sim 2MeV)$

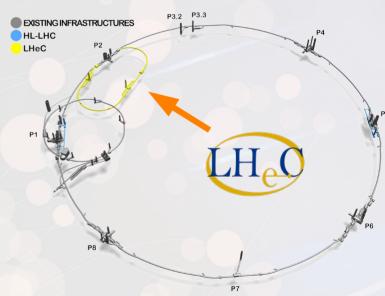
Effective weak mixing angle in pp

Large uncertainty from PDFs

- HL-LHC-PDF reduces uncertainty by 10-25%
- LHeC-PDFs reduces PDF uncertainties by an additional factor of 5

Summary

LHeC & FCC-eh projects

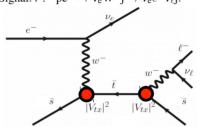

- LHeC: 60 GeV electron times 7TeV proton (√s=1.3TeV), synchronous with HL-LHC
- FCC-eh: 60 GeV electron times 50TeV proton (√s=3.5TeV), synchronous with FCC-hh

Top physics at LHeC/FCC-eh

- Rich top-quark programme: Single-top factory |Vtb| (~1%),
- top quark couplings (Wtb, tty, ttZ, ttH, ...), anom. couplings, FCNC, properties: polarisation, charge, PDFs; searches for new physics, CP violation in top-Yukawa, ...

Electroweak physics at LHeC/FCC-eh (arXiv:11799)

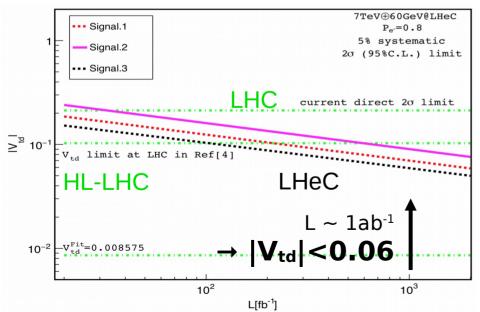
- Fundamental EW parameters: Competitive with (HL-)LHC/LEP
- Complementary to Z-pole data; unique measurements possible
- EWK physics at HL-LHC needs LHeC-PDFs

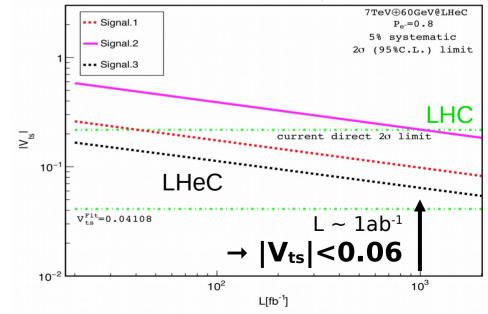

Update on CDR on arXiv yesterday: arXiv:2007.14491

$|V_{td}|$ and $|V_{ts}|$ in CC single-top production

Measurement of |V_{td}|

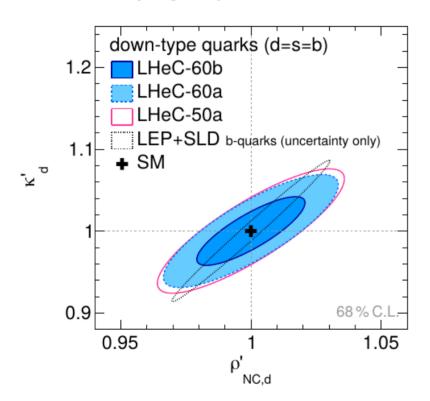
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

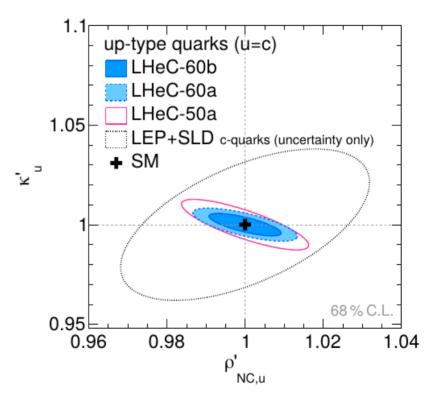

Signal.1: $pe^- \rightarrow \nu_e \bar{t} \rightarrow \nu_e W^- \bar{b} \rightarrow \nu_e \ell^- \nu_\ell \bar{b}$, Signal.2: $pe^- \rightarrow \nu_e W^- b \rightarrow \nu_e \ell^- \nu_\ell b$, Signal.3: $pe^- \rightarrow \nu_e \bar{t} \rightarrow \nu_e W^- j \rightarrow \nu_e \ell^- \nu_\ell j$, Signal.4: $pe^- \rightarrow \nu_e W^- j \rightarrow \nu_e \ell^- \nu_\ell j$.


Measurement of V.

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

simplified analysis, using 4 signal channels

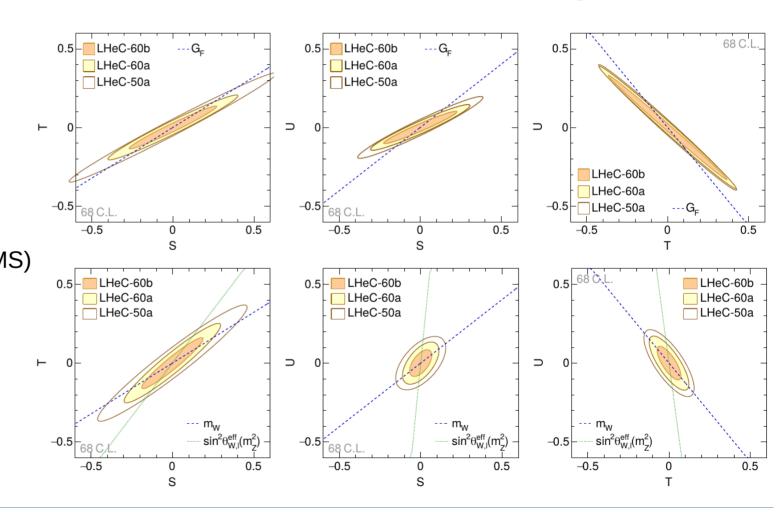

Hao Sun, LHeC CDR 2020



Quark couplings

4-parameter fit for up and down-type couplings

- tagged c- and b-quark measurements at LEP
- LHeC mainly light quarks, u and d



STU parameters from inclusive DIS

S, T, U parameters are non-SM contributions to Z, W boson self-energies

Shown

- 2-parameter fits incl. PDF fit
- Scheme dependence
 On-shell (OS)
 Modified on-shell (MOMS)
- Inclusive DIS
 Possible to disentangle
 S, T and U
- Complementary to Z-pole

