Extraction of CKM matrix elements in the single-top t-channel events at 13 TeV with CMS

Agostino De Iorio ${ }^{1}$

'Universitid degi Studi di inapoi "Federicic I" and INEN serione di Napoli on behalf of the CMS Collaboration

ICHEP2020: 40 ${ }^{\text {th }}$ International Conference on High Energy Physics, 28 Jul - 6 Aug 2020

Single-top t-channel process

In pp collisions at the LHC, the single-top-quark production could happen in three different ways: t-channel, s-channel and tW associate production.

t-channel Largest cross section

A light-flavour quark q from one of the colliding protons interacts with a b-quark by exchanging a space-like virtual W boson, producing a top quark (t-quark) and a recoiling lightflavour quark q^{\prime}, called the spectator quark.

The single top t-channel production process is particularly indicated to measure the Cabibbo-Kobayashi-Maskawa elements $\left|V_{t b}\right|,\left|V_{t s}\right|$, and $\left|V_{t d}\right|$.
The cross section multiplied by the branching fraction can be written as:
$\sigma_{t-c h ., \mathrm{b}} \mathcal{B}(\mathrm{t} \rightarrow \mathrm{Wb})+\sigma_{t-\mathrm{ch} ., \mathrm{b}} \mathcal{B}(\mathrm{t} \rightarrow \mathrm{Wd}, \mathrm{s})+\sigma_{t-\mathrm{ch} ., \mathrm{s}, \mathrm{d}} \mathcal{B}(\mathrm{t} \rightarrow \mathrm{Wb})+\mathcal{O}\left(\left|V_{\mathrm{td}, \mathrm{s}}\right|^{4}\right)$ where:

$$
\sigma_{t-\mathrm{ch} ., \mathrm{q}} \propto\left|\mathrm{~V}_{\mathrm{tq}}\right|^{2} \quad \mathcal{B}(\mathrm{t} \rightarrow \mathrm{Wq})=\left|\mathrm{V}_{\mathrm{tq}}\right|^{2} \widetilde{\Gamma_{\mathrm{q}}} \Gamma_{\mathrm{top}}
$$

Motivation
In single-top t-channel process presence of two $t W q$ vertexes Highly sensitive to

- $\left|V_{t b}\right|,\left|V_{t s}\right|$, and $\left|V_{t d}\right|$
$\left|V_{t s}\right|^{2}+\left|V_{t d}\right|^{2}$ never directly measured

- New physics phenomena

$$
\begin{array}{ll}
\text { Standard Model scenario: }\left|V_{t b}\right|^{2}+\left|V_{t d}\right|^{2}+\left|V_{t s}\right|^{2}=1 \\
\mu_{\mathrm{b}}=\frac{\left|V_{\mathrm{tb}}\right|_{\text {lobs }}^{4}}{\left|V_{\mathrm{tb}}\right|^{4}} \quad \mu_{\mathrm{sd}}=\frac{\left|V_{\mathrm{tb}}\right|_{\text {obss }}^{2}\left(1-\left|V_{\mathrm{tb}}\right|_{\mathrm{obs}}^{2}\right)}{\left|V_{\mathrm{tb}}\right|^{2}\left(1-\left|V_{\mathrm{tb}}\right|^{2}\right)}
\end{array}
$$

Beyond the Standard Model scenarios

$$
\begin{array}{c:c}
\left|V_{t b}\right|^{2}+\left|V_{t d}\right|^{2}+\left|V_{t s}\right|^{2} \neq 1 & \Gamma_{t} \text { is allowed to vary due to } \\
\text { decay in new particles }
\end{array}
$$

Analysis strategy

Final state topology

Three orthogonal regions defined accordingly to the number of jets and b-jet in each event.

Multivariate analysis and fit procedure

Signal to background discrimination:

- Several kinematic variables
- Use of Boosted Decision Trees discriminator

Finally a simultaneous fit is performed to the 6 categories: 2 lepton flavour x 3 regions.

Multiple regions definitions

b from the gluon splitting out of selection

Several backgrounds present

* Top pair production (-)
$*$ Vector boson $+j$ jets ($W+$ Jets)
* s-channel
\star tw associate production
* aCD multijets

The three regions are all included in the final fit for the extraction of the CKM matrix elements and to constrain the backgrounds.

Signal region: 3 -jets- 1 -tag
1 light jet in high n region
1 light jet in high η region
Lepton from the W boson
Lepton from the W boson
Missing momentum in the transverse plane (v)
b jet from top and non-b from gluon splititing
non-b jet from top and b from gluon splititing

Estimation QCD contribution

QCD sample from MonteCarlo simulation is not reliable. Distributions for QCD estimated from a sideband region obtained by reverting the isolation requirement on the lepton.

Results
The absolute values of CKM matrix elements are extracted from the fit results[1]:

Standard Model scenario
$\left\|\mathrm{V}_{\mathrm{tb}}\right\|^{2}>0.970$
$\left\|\mathrm{~V}_{\mathrm{ts}}\right\|^{2}+\left\|\mathrm{V}_{\mathrm{td}}\right\|^{2}<0.057$

Comparison with previous measurements

The results are more precise than the last measurement of $\left|\mathrm{V}_{\mathrm{tb}}\right|$ performed by CMS [2]:
$\left|f_{\mathrm{LV}} V_{\mathrm{tb}}\right|=0.98 \pm 0.07$ (exp) ± 0.02 (theo)

The results are in agreement with value obtained from the combination of all the single-top-quark production cross section measurements with the full Run-I data [3]:
$\left|f_{\mathrm{LV}} V_{t b}\right|=1.02 \pm 0.04$ (meas.) ± 0.02 (theo.)

