

First results of the R2D2 project

A.Meregaglia (CENBG - CNRS/IN2P3)

on behalf of the R2D2 collaboration

Introduction

- To demonstrate the Majorana nature of neutrino the most sensitive experimental way is an observation of the so called $0v\beta\beta$ decay.
- The three **main requirements** to search for such a rare phenomenon are:

 R2D2 is an R&D program aiming at the development of a zero background ton scale detector to search for the neutrinoless double beta decay.

Using a spherical high pressure xenon TPC

The detector

- The detector is a spherical Xenon gas TPC as proposed by Giomataris et al. and used today in the NEWS-G collaboration for the search of dark matter.
- The design has to be optimised for the background reduction in the $\beta\beta0\nu$ search with ¹³⁶Xe (Q_{\beta\beta} of 2.458 MeV).

To be validated Main goal of R2D2 R&D

Detector features

High energy resolution (goal of 1% FWHM at 136Xe Q_{ββ})

- Extremely low (zero?) background due to the very low material budget.
- Scalability to large isotope masses (1 ton = 1 m radius at 40 bars)
- Low detection threshold at the level of 30 eV i.e. single electron signal.
- High detection efficiency (~ 65% after selection cuts).
- Simplicity of the detector readout with only one (or few in the upgraded version) readout channels.

R2D2 collaboration

- A proto-collaboration has been formed.
- R2D2 is today approved as IN2P3 R&D to assess in particular the possibility to reach the desired energy resolution which is the major showstopper.

- R. Bouet^a J. Busto^b V. Cecchini^{a,f} C. Cerna^a
- A. Dastgheibi-Fard^c F. Druillole^a C. Jollet^a P. Hellmuth^a
- I. Katsioulas^d P. Knights^{d,e} I. Giomataris^e M. Gros^e
- P. Lautridou^f A. Meregaglia^{a,1} X. F. Navick^e T. Neep^d
- K. Nikolopoulos^d F. Perrot^a F. Piquemal^a M. Roche^a
- B. Thomas^a R. Ward^d M. Zampaolo^c

```
<sup>a</sup>CENBG, Université de Bordeaux, CNRS/IN2P3, F-33175 Gradignan, France
<sup>b</sup>CPPM, Université d'Aix-Marseille, CNRS/IN2P3, F-13288 Marseille, France
<sup>c</sup>LSM, CNRS/IN2P3, Université Grenoble-Alpes, Modane, France
<sup>d</sup>School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom
<sup>e</sup>IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
<sup>f</sup>SUBATECH, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, France
```

The R2D2 Roadmap

Prototype

Running - Funded by IN2P3 R&D

Up to 10 kg (40 bars) Xenon prototype (no low radioactivity) to demonstrate the detector capability in particular on the energy resolution

Demonstrator

If prototype 1 successful and prototype 2 funded

Prototype 2

Sensitivity studies carried out

50 kg Xenon detector (low radioactivity) with LS veto for first physics results to demonstrate the almost zero background

 $m_{\beta\beta} < 160 - 330 \text{ meV}$

Depending on the results and fundings

JINST 13 (2018) no.01, P01009

Going towards a 1 ton background free detector

Exploit the detector with other gases to cross check the background and possibly obtain interesting results selecting higher $Q\beta\beta$, as well as the possibility to do tracking

 $m_{\beta\beta}$ < 10 meV (I.H. covered)

Experimental setup

- In 2018 the R2D2 was funded as R&D by the IN2P3: the main goal is the demonstration that the desired energy resolution is achievable.
- A 20 cm radius sphere made of Aluminium (i.e. no low background but much cheaper) was built at CENBG.
- Efforts were made to reduce the noise as much as possible:
 - Isolated and temperature controlled environment.
 - Vibrational insulation of the supporting structure and of the central anode.
 - Custom made low noise electronics (OWEN project).
- The setup was commissioned and is currently being operated with Ar (98%) + CH₄ (2%) at CENBG at pressures up to 1.1 bar.

Certified sphere to go up to 40 bars and Xenon recuperation system expected in October 2020

Detector operation

- To assess the energy resolution a 4Bq ²¹⁰Po alpha source of 5.3 MeV was used.
- The source deposited on a silver film is located on a support and inserted from the bottom of the detector.
- Runs were taken as different pressures.
- A pulse generator was used as input in the electronic chain to monitor and correct for possible electronics response variations.
- Runs were typically short (30 minutes) to avoid to apply corrections due to gas degradation and new gas was used each time after pumping the detector at a vacuum of 10-6 mbar.
- A dedicated simulation (JINST 15 (2020) C06013) based on Geant4 and Garfield++ was used to cross check the obtained results and confirm our understanding of the detector response.

Detector stability

- Short runs over a period of 14 days without changing the gas were taken to assess detector stability.
- Electronegative impurities concentration, due to material outgassing and leakages, increases in time resulting into a smaller number of electrons reaching the anode.
- The mean value of the reconstructed energy for alphas and for the generator was used to estimate the signal loss variation in time.
- A loss of 0.05% per hour was measured.
- Such a loss can be corrected offline, and reduced in future upgrades of the detector reducing the leakage (today at 5 x 10-9 mbar/s).

Results

- At 200 mbar alpha tracks have a length of about 15 to 20 cm.
- Several variables were computed on the waveform to study the signals, two of which are the total reconstructed charge (Qt) and the signal length (Dt).
- The agreement between data and simulation is very good and the detector behaviour is well understood.

Tracks hitting the cathode (large angle, $\cos\theta$ <-0.4) have a decreasing Qt and the decrease in Dt is driven by threshold effect (smaller signals go under threshold in a smaller time).

Tracks not hitting the cathode at large angle ($\cos\theta = -0.6$) should have a smaller Dt with respect to tracks going towards the anode ($\cos\theta = -1$) since electron drift is similar. It is not the case since diffusion effects dominate as demonstrated by the simulation.

Resolution

- The resolution was computed at 200 mbar and 1.1 bar.
- We obtained a similar resolution showing **no impact due to the length of the tracks** (from 3-4 cm at 1.1 bar to 15-20 cm at 200 mbar).
- We estimate to 0.6% the contribution of the source itself and of the electronics giving an intrinsic resolution due to the detector at 0.97%.

ArXiv:2007.02570

Next steps

- The results should be confirmed in different conditions:
 - Higher pressure
 - With electrons
 - In xenon
 - With a diffuse source

New detector certified at 40 bars in October

Recuperation and recirculation systems ready in October

²⁰⁷Bi source available but more than 10 bars needed to contain electron tracks

Clean radon source yet to be found (problem with electronegative impurities)

- Further developments of the electronics ongoing.
- Tests to read the scintillation light for a precise time stamp ongoing (excellent preliminary results).
- Possibility to use multi-sensor anode (ACHINOS).

Conclusions

- The R2D2 collaboration has been formed and the R&D has been approved by IN2P3.
- Preliminary studies showed that we could have competitive sensitivity with small masses and potentially zero background detectors with large masses.
- A good detector understanding demonstrated and a resolution at the level of 1.1% was achieved with alphas at 5.3 MeV.
- We also demonstrated that the energy resolution is not degraded going from point-like energy deposits to long particle tracks.
- Results to be confirmed in xenon at higher pressure.
- Depending on the success of the R&D we hope to move on in order to build a prototype allowing for real physics results.