Systematic Uncertainties of the NOvA Neutrino Oscillation Analysis

Tomas Nosek^b Charles University, Institute of Particle and Nuclear Physics

(for the NOvA Collaboration)

Sources of Systematic Uncertainties

Low energy neutrons

- Important uncertainty for $\bar{\nu}_{\mu}$ events
- Empirical uncertainty motivated by an observed data/MC disagreement in low energy neutron clusters

Neutrino cross sections

- GENIE (v3.0.6, model configuration N1810k0211a) doesn't describe NOvA data
- Specific NOvA tuned model based on Xsec # measurements and Near Detector data
- The uncertainties are estimated from those of the NOvA model parameters for individual interaction types (over 70)
- Larger ones are used directly in the analysis
- The rest are included using a principal component analysis approach

NOv A Preliminary

energy is approximately 1% Studies focusing on cause of the discrep-

ullet Uncertainty in $ar{
u}_{\mu}$ events reconstructed

ancy are under way

Calibration

- \bullet Stopping μ are used to set the absolute energy scale
- ¹⁰⁰⁰⁰ The uncertainty comes from discrepancies in particle energy studies, such as the dE/dx of μ and most importantly p
 - NOvA test beam program can help to study how different particles deposit energy in the NOvA detectors

Other Sources

Distance from track end (cm)

- Detector response: light yield, cherenkov/scintillation light yield ratio, detector aging
- Beam flux (with principal component analysis)
- ullet Lepton reconstruction: μ energy scale and lepton angle reconstruction
- Near to Far uncorrelated uncertainties: rock events scale, cosmic background scale, exposure counting, detector mass, detectors acceptance

The NOvA Experiment

- Neutrino oscillation experiment with 810 km long baseline
- $\bullet \nu_{\mu}$ from Fermilab's 700 kW NuMl beam world's most powerful neutrino beam
- ν_{μ} vs $\bar{\nu}_{\mu}$ dominated beam modes
- 2 functionally identical, 14 kt (Far) and 0.3 kt (Near), highly segmented, low-Z liquid scintillator detectors
- 14.6 mrad off the NuMI beam axis
- Physics interests: probing ν mass ordering, CP violation, θ_{23} octant and beyond

Far Detector Prediction Uncertainties

- Uncertainties are determined for the ν_e and ν_μ Far Detector predictions separately
- The ν_{μ} analysis sample is affected most by the detector calibration
- The ν_e prediction's largest systematic is cross section uncertainty of ν interactions, though main uncertainty comes from low statistics

Reducing Detector Correlated Uncertainties

- For each considered systematic uncertainty shifted predictions are generated by:
- 1. Weighting MC w.r.t. event type $(\pm 1, 2\sigma)$
- 2. Adjusting the simulated variables $(\pm 1, 2\sigma)$ 3. Creating a new simulated sample $(\pm 1\sigma)$
- ND predictions are translated to the FD using Neutrino Cross Sections the Far/Near extrapolation technique
- This reduces detector correlated uncertainties such as beam flux and ν cross section

- Beam flux and ν cross sections are treated with principal component analysis (PCA)
- PCA uses eigenvalue decomposition of a covariance matrix from an ensemble of randomly generated shifted predictions in energy bins of Near and Far/Near basis
- Identifying the largest principal components helps to account for possible bin-bin correlations and reduces the number of systematic nuisance parameters included in the fit (from tens to units) and thus reduces computation time

Uncertainties on Neutrino Oscillation Parameters

- ullet NOvA is sensitive to several u oscillation parameters: Δm_{32}^2 , $\sin^2 \theta_{23}$ and δ_{CP}
- approaching systematic limits
- All three parameters are most influenced by calibration and neutron uncertainties

Conclusions

NOvA Prelimina

Total Prediction Uncertainty (%)

Lepton Reconstruction Not Extrapolated

Neutron Uncertaint

Detector Response

Detector Calibration

Near-Far Uncor.

Systematic Uncertainty

Beam Flux

- Functionally identical detectors and Far/Near extrapolation technique allow for notable reduction in uncertainties on beam flux and ν cross sections
- NOvA is limited by statistics but approaching its systematic limits

Uncertainty in $\Delta m_{32}^2 (\times 10^{-3} \text{ eV}^2)$

- Studies of systematic effects are vital for understanding detectors performance and further analysis improvements
- NOvA's test beam program might help to reduce several systematic uncertainties

Acknowledgments This research is supported by MSMT CR