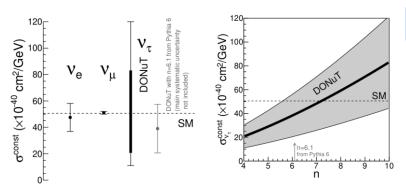


Experiment DsTau (NA65) - study of tau neutrino production at CERN SPS

Svetlana Vasina, JINR, Russia on behalf of DsTau/NA65 Collaboration

ICHEP 2020, 28/07-06/08, Prague, virtual conference

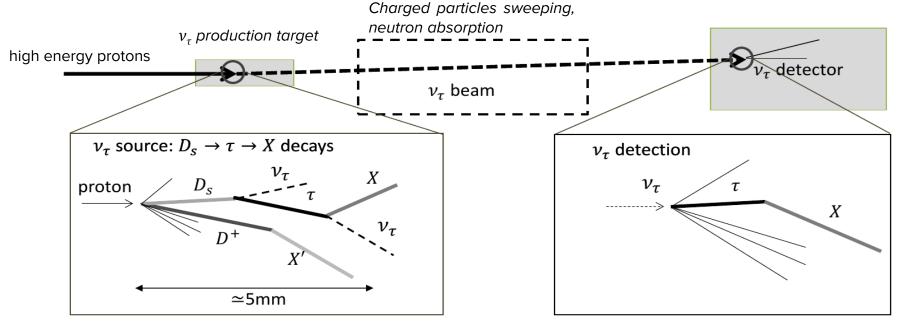
Tau neutrino and lepton universality DsTau


Tau neutrino is one of the least studied particles

➤ few measurements only

direct v_{τ} beam: DONuT

 $Oscillated \nu_{\tau}: \qquad OPERA, Super-K, IceCube$


- > Cross section error > 50% caused by *systematic uncertainty in* v_{τ} *production*
- Lepton Universality test in neutrino scattering
 - → Hint on *LU violation from B decays*, $\overline{B} \rightarrow \tau \nu_{\tau} D^{(*)}$ New physics in tau sector?
 - > A precise measurement of v_{τ} cross-section would provide a unique and complementary information

v_{τ} cross-section uncertainties in DONuT

- Statistics: ~33%, 9 events were detected → to be improved by neutrino experiments (FASER, SHiP, etc.)
- Production: >50% due to lack of differential production cross section data and 33% caused by 2 other reasons → to be improved by DsTau

v_{τ} cross section measurement with accelerator

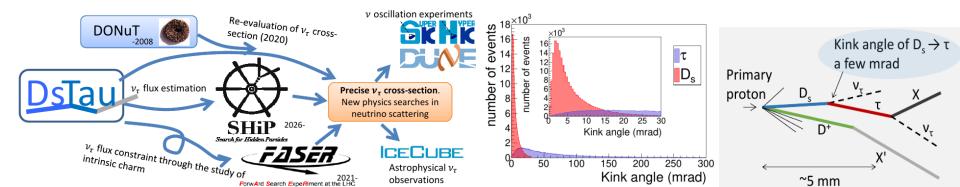
ν_{τ} production study: DsTau

- \succ D_S production differential cross-section will be measured
- > The systematic uncertainty in v_{τ} production will be decreased from present ~50% to 10%.

v_{τ} detection: SHiP etc

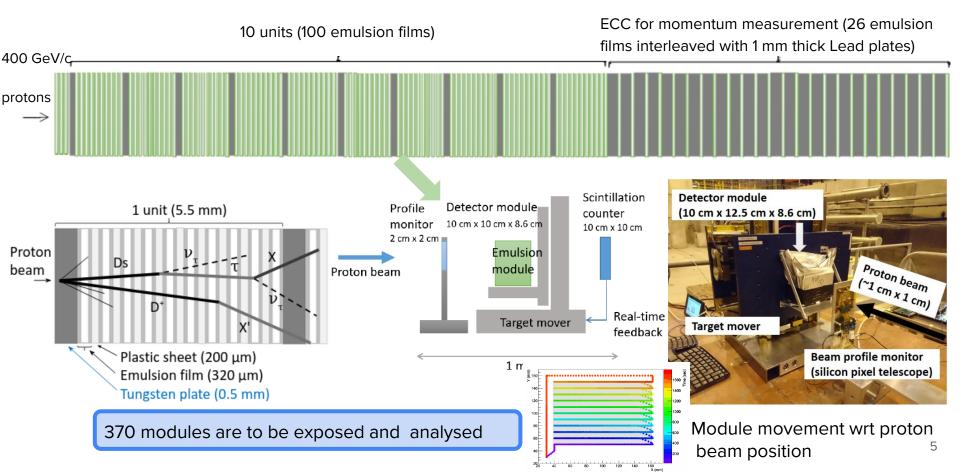
Statistical uncertainty 33% in DONuT will be reduced to the 2% level in future experiments

DsTau experiment at CERN SPS


Goals:

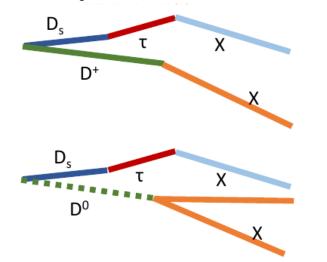
Study of v_{τ} production for future tau neutrino experiments

- First measurement of D_s double differential production cross section
- > Provide 0(10 GeV) v_{τ} production with beam dump method
- > To reduce uncertainty of v_{τ} flux from >50% to 10%
- **Charm physics, intrinsic charm component in proton**


Principles of the experiment:

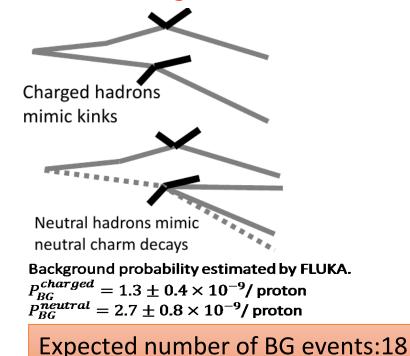
- > Detection of "double-kink+charm decay" topology within several mm
- → 4.6 x 10⁹ 400 GeV/c protons → 2.3 x 10⁸ interactions in W/Mo → 10⁵ charm pairs → 1000 D_s → τ → X decays

Experimental setup



Signal and background

Signal: $D_s \rightarrow \tau$ decay with small kink ~7 mrad



Detection efficiency = 20%, estimated with Pythia 8.

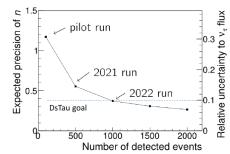
Signal probability 2.2x10⁻⁷/proton

Expected number of signal events: 1000

Main background: interactions of secondary hadrons (products of proton interactions) with no nuclear fragments detected

Project schedule

Feasibility study 2016 • Test of detector structure Test beam 2017 Improved detector structure • Refine exposure scheme Pilot run 2018 • 1/10 of the full-scale experiment • 30 % uncertainty on flux • Revise the DONUT result • Charm physics Physics run 2021-2022


• Full scale experiment

- Aiming at collecting 1000 events
- 10 % uncertainty on flux

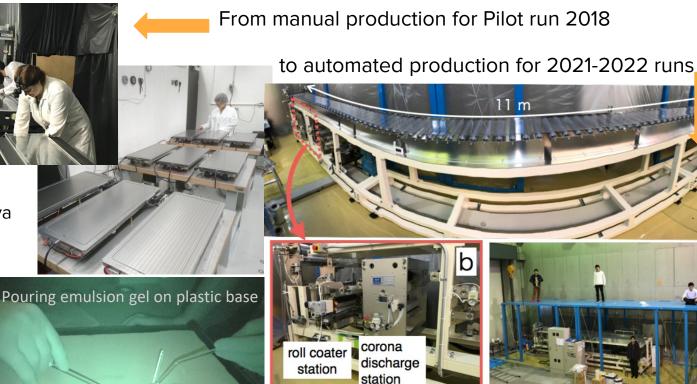
	# of modules	Emulsion films (m ²)
Pilot run 2018	30	49
Physics run 2021*	150	246
Physics run 2022*	190	312

*2 weeks each, pilot run exposure speed is quick enough

We are here

target	# of proton interactions	with charm pairs	Detected $D_S \rightarrow \tau \rightarrow X$
W 0.5 mm	1.08 x 10 ⁸	1.95 x 10⁵	~530
Mo 1.0 mm	1.41 x 10 ⁸	2.10 x 10⁵	~500

Emulsion production

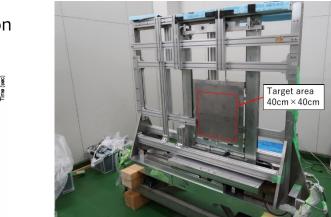

Film production facilities in Nagoya and Bern

Nagoya - 5.3 m²/week

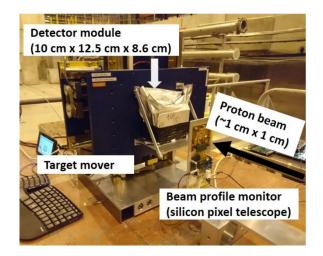
Bern - 7 m²/week

Emulsion

Base

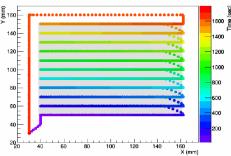

Nagoya - 12.5 m²/day, would be ready for a production test in September 2020

Emulsion


Proton beam exposure at the SPS-H2 DsTau

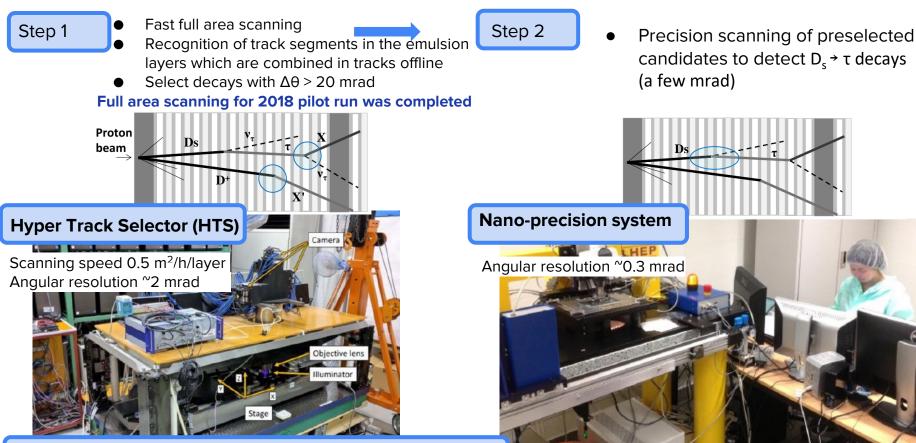
Target mover used during 2016-2018

Target mover for 2021-2022 runs



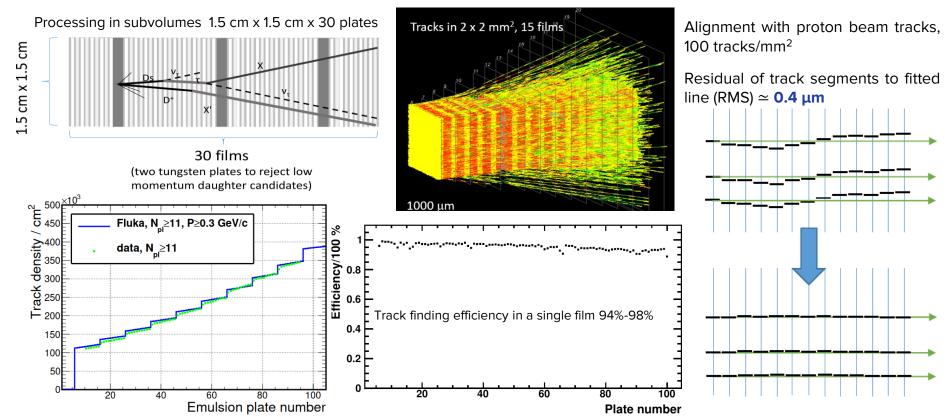
Intensity driven control (2017-2018) (mu) 35 300 _≧ đ Lack 200 X (mm)

- 30 modules (12.5 cm x 10 cm) exposed in 23rd-27th August 2018
- > 0.5-1 h per module 10^5 protons / cm² → 1.25 x 10^7 protons / module


Module movement wrt proton beam position

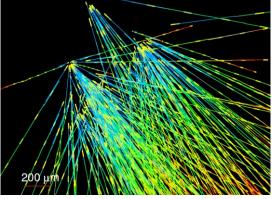
Constant speed (2016) ۲ (mm) 250 Track density / X (mm)

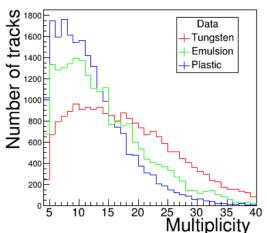
Analysis steps

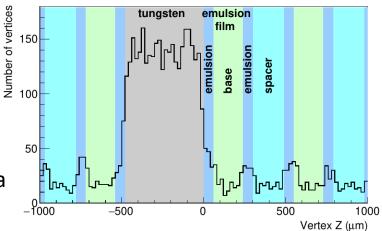


HTS-2 with speed of 2.5 m²/h/layer is under construction

Data reconstruction: tracking, alignment


DsTau is triggerless experiment registering primary protons and their interactions at the track density level of 10⁵-10⁶ tracks/cm². Unique spatial resolution of emulsion detectors allows to efficiently recognise the tracks and vertices.


Data reconstruction: vertexing

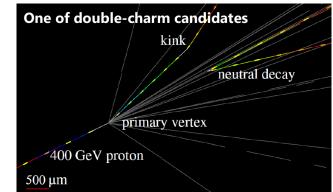

Tracks emerging from tungsten target

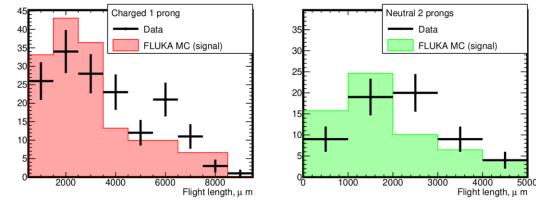
Vertex density ~500/cm²/ tungsten plate

We are performing comparison between data and different generators Reconstructed vertex position

Fine detector structure is observed by reconstructed vertices

Data reconstruction: charm decay search DsTau


Subsample of 2016 and 2018 runs were analysed


Double charm event search: a charged 1-prong decay + another charged or neutral decay

- >34.2 x 10⁶ protons analysed
- > 272,120 proton interactions reconstructed (147,236 in tungsten)
- > 159 events (115 in tungsten) with double decay topology detected

	Observed	Expected		
Vertices in tungsten	147,236	155,135		
		Signal Backgroun		
Double decay topology	115	80.1 ± 19.2	12.7 ± 5.0	

> Flight length distribution shows that **our charm analysis chain works**

- DsTau project was proposed at the CERN SPS to study ν_τ production (CERN-SPSC-2017-029, SPSC-P-354, <u>arXiv:1708.08700</u>), was approved as NA65 in July 2019
 - ➤ Detect 1000 D_s → τ → X decays in 2.3 x 10⁸ 400 GeV/c proton interactions employing emulsion detector with a spatial resolution of 50 nm
 - > Reduce the systematic uncertainty in the v_{τ} cross section measurement from >50% to 10%
 - > Study charm particle production which will provide important input to QCD studies
- **2018** pilot run successfully performed, about 10% of data were collected,
 - analysis is underway (JHEP01(2020)033, arXiv:1906.03487)
 - ➤ Fast full area scanning is completed
 - > Data analysis is ongoing (data/MC comparison, systematic double charm candidates search)
- Preparing for physics run 2021/2022 (CERN NA65)
 - Detector geometry optimization
 - Fast emulsion production line preparation
 - ► Faster readout preparation

Thank you for attention!

DsTau team during 2018 pilot run

Collaboration

Japan

Aichi University of Education Gifu University Tohoku University Kobe University Kyushu University Nagoya University

Romania Institute of Space Science Bucharest

Russia

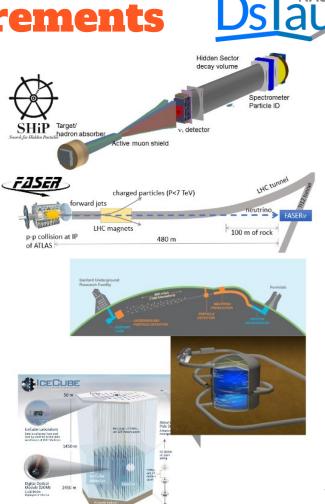
Joint Institute for Nuclear Research

Switzerland CERN

University of Bern

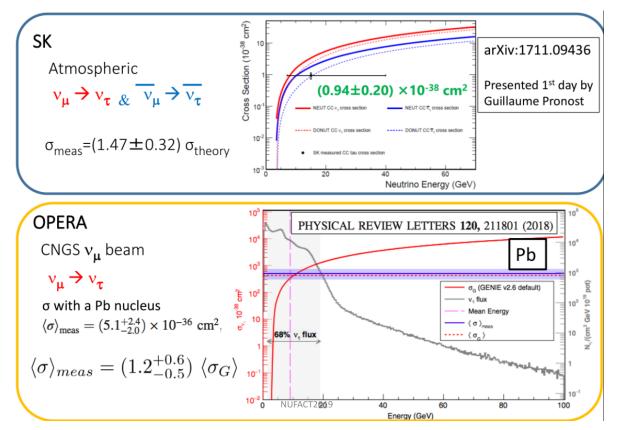
Turkey Middle East Technical University

BACKUP SLIDES

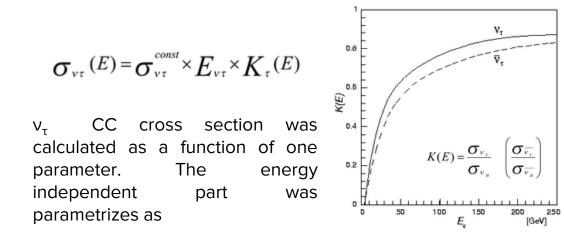

Future tau neutrino measurements

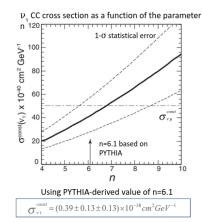
Opportunities to measure $\nu_\tau\,$ cross section

SHiP: high statistics ν_τ measurement at the SPS beam dump facility

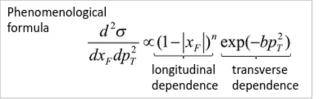

 $\Delta \sigma$ ~10% with DsTau reduction of v_{τ} beam uncertainty

- **FASER**: high energy v_{τ} measurements at the LHC
- $\nu_\tau\,$ cross section has influence to
 - Long baseline neutrino oscillation experiments
 - > DUNE, Hyper-K, SK
 - \succ v_t is background to v_e, due to t+e channel
 - IceCube
 - > Astrophysical v_{τ} measurements

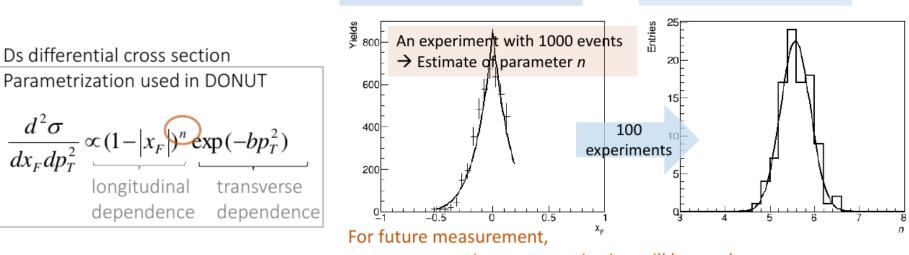



ν_τ cross section measurement by oscillated neutrinos

Results from DONuT



No published data giving n for D_s produced by 800 GeV proton interactions


$\sigma_{v\tau}^{const} = 7.5(0.335 n^{1.52})$	1	by 800 GeV proton interactions				
here n is the parameter controlling the		Unce	ertainties in cross section measurement	DONuT	Systematic uncertainty after DsTau outcome	Future ν _τ measurement with DsTau outcome
fferential cross section		ν_τ statistics	0.33		0.02	
nenological			D _s differential cross section (x _F dependence)	>0.50	0.10	0.10
12	x_F is Feynman x ($x_F = 2p^{CM}Z/Vs$)		Charm production cross section	0.17		
$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1- x_F)^n \exp(-bp_T^2)$	p_{T} is transverse momentum		Decay branching ratio (D_s $\rightarrow \tau)$	0.23 (0.04 at present)	0.05	0.05
longitudinal transverse			Target atomic mass effects	0.14		
0						19

$$x_F$$
 is Feynman x ($x_F = 2p^{CM}z/\sqrt{s}$)

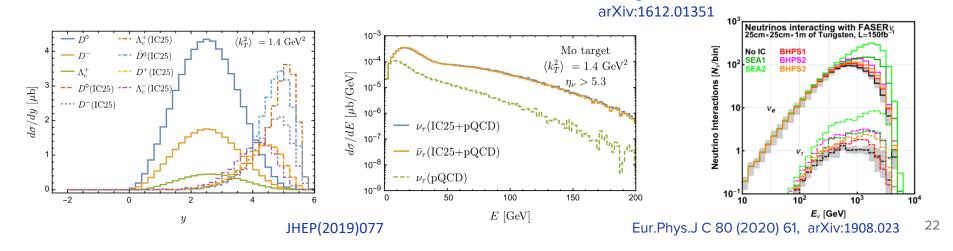
Estimation of parameter n for DONUT re-evaluation Reconstructed x_F

(corrected by the efficiency)

a more appropriate parametrization will be used

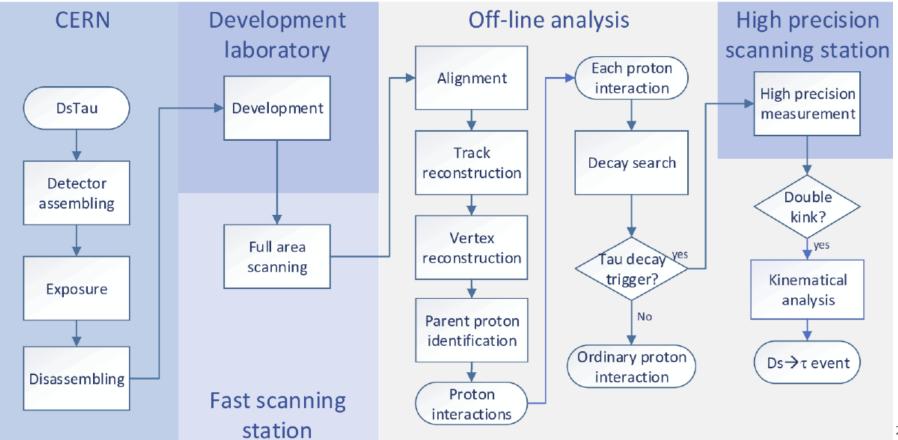
Unfolding of the reconstruction x_F distribution to be applied (method will be investigated)

Estimated parameter n


Charm production cross section

Experiment	Beam type / energy (GeV)	σ(D _s) (μb/nucl)	σ(D±) (μb/nucl)	σ(D⁰) (µb/nucl)	σ(Λ _c) (μb/nucl)	x _F and p _τ dependence: <i>n</i> and <i>b</i> (GeV/c) ⁻²
HERA-B	p / 920	18.5 ± 7.6 (~11 events)	20.2 ± 3.7	48.7 ± 8.1	-	n(D ⁰ , D ⁺) = 7.5 ± 3.2
E653	p / 800	-	38 ± 17	38 ± 13		$n(D^0, D^+) = 6.9 \stackrel{+1.9}{}_{-1.8}$ $b(D^0, D^+) = 0.84 \stackrel{+0.10}{}_{-0.08}$
E743 (LEBC-MPS)	p / 800	-	26 ± 8	22 ± 11		$n(D) = 8.6 \pm 2.0$ $b(D) = 0.8 \pm 0.2$
E781 (SELEX)	Σ ⁻ (sdd) / 600					~350 D _s ⁻ events, ~130 D _s ⁺ events ($x_F > 0.15$) n(D _s ⁻) = 4.1 ± 0.3 (leading effect) n(D _s ⁺) = 7.4 ± 1.0
NA27	p / 400		12 ± 2	18 ± 3		
NA16	p / 360		5 ± 2	10 ± 6		
WA92	π/350	1.3 ± 0.4		8 ± 1		
E769	p / 250	1.6 ± 0.8	3 ± 1	6 ± 2		320 ± 26 events (D [±] , D ⁰ , D _s [±]) n(D [±] , D ⁰ , D _s [±]) = 6.1 ± 0.7 b(D [±] , D ⁰ , D _s [±]) = 1.08 ± 0.09
E769	π [±] / 250	2.1 ± 0.4		9 ± 1		1665 \pm 54 events (D [±] , D ⁰ , D _s [±]) n(D [±] , D ⁰ , D _s [±]) = 4.03 \pm 0.18 b(D [±] , D ⁰ , D _s [±]) = 1.08 \pm 0.05
NA32	π/230	1.5 ± 0.5		7 ± 1		gies differ too much) $\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - x_F)^n \exp(-\frac{1}{2} \exp(-\frac{1}{2} e^{-\frac{1}{2}})^n \exp(-$

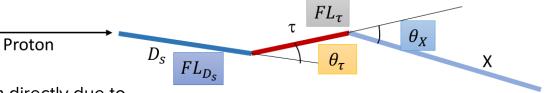
No experimental result effectively constraining the D_s differential cross section at the desired level or consequently the v_{τ} production


ν_{τ} production uncertainty

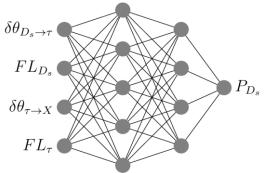
- No experimental data on the D_S differential production cross section in p-N interactions → >50% uncertainty
- Tau neutrino production may be affected by "intrinsic charm" content of proton
 - \succ $c\bar{c}$ quarks which behave like valence quarks
 - Increase charm meson production in forward direction
- v_{τ} flux may change by a factor of 10

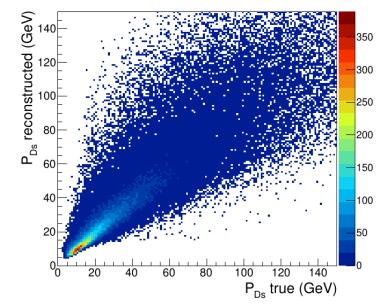
DsTau experiment scheme

Efficiency for $D_{s} \rightarrow \tau \rightarrow X$ **detection**



Selection	Efficiency $(\%)$
(1) Flight length of $D_s \ge 2$ emulsion layers	77
(2) Flight length of $\tau \geq 2$ emulsion layers and $\Delta \theta_{D_s \to \tau} \geq 2$ mrad	43
(3) Flight length of $D_s < 5$ mm and flight length of $\tau < 5$ mm	31
(4) $\Delta \theta_{\tau \to X} \ge 15 \text{ mrad}$	28
(5) Pair charm: $0.1 \text{ mm} \le \text{flight length} < 5 \text{ mm}$	20
(charged decays with $\Delta \theta \geq 15$ mrad or neutral decays)	




D_s momentum reconstruction

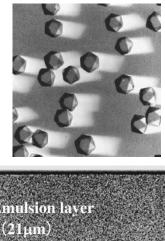
- It is difficult to measure D_s momentum directly due to short lifetime
- D_s momentum reconstruction by topological variables
- A Neural Network with 4 variables was trained with MC events
- ▶ Momentum resolution for τ → 1-prong decay $\Delta p/p = 18\%$

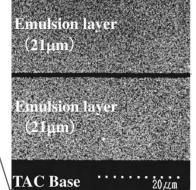
Emulsion detector

AgBr crystals

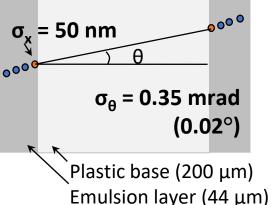
- ≻ D = 200 nm
- Detection eff. = 0.16/crystal
- ➤ Volume occupancy = 30%

10¹⁴ crystals in a film

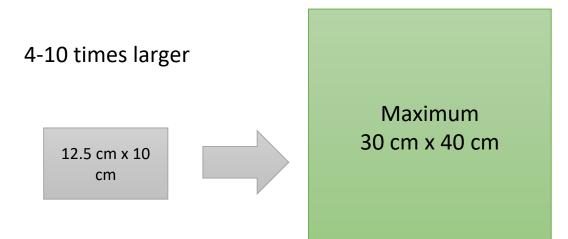



Emulsion layer (44µm)

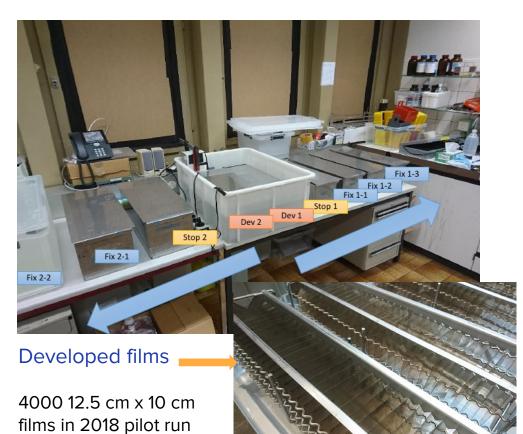
TAC base (200µm)

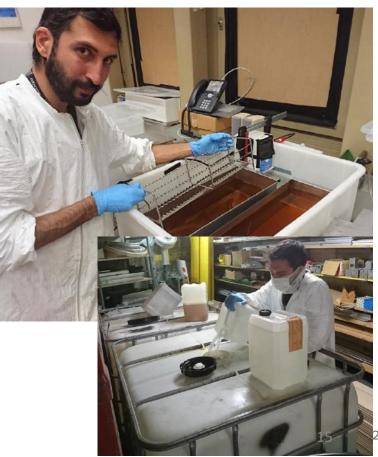

Emulsion layer (44µm)

Nucl.Instrum.Meth.A 556 (2006) 80-86


sensitivity mip 15 grains/44 microns electron ~100 keV 20 µm high dE/dx tracks from nuclear evaporation 000

Emulsion film production



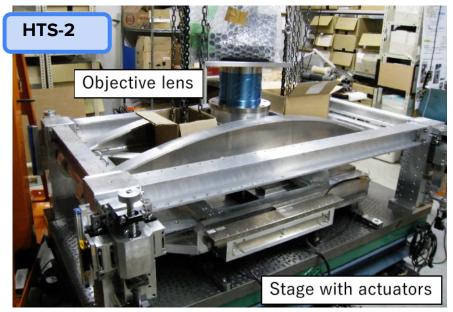

- Gel/Film production in Nagoya University
- Large scale gel production facility is budgeted and under construction.
- Change in film size under discussion to minimize the scanning effort
 - Faster readout with less film exchange
 - No impact to physics performance

Emulsion development

Detector assembling

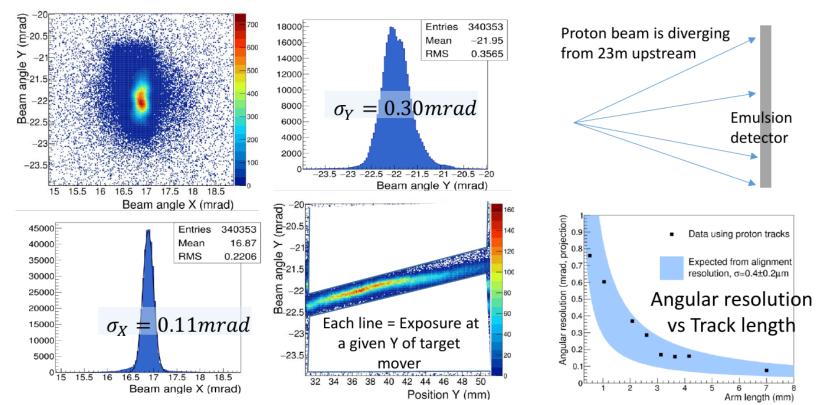
Pilot run 2018: 30 modules (131 films/module, 235 components) prepared i n total

Mechanical support to assemble modules



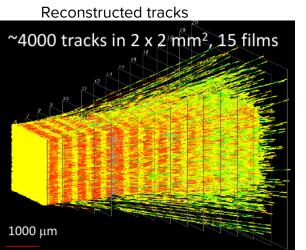
A module on the target mover

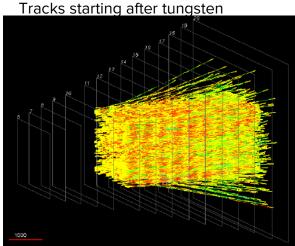
New scanning system preparation

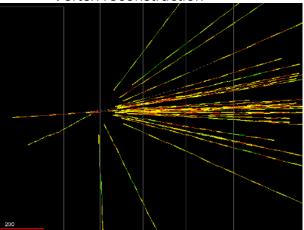

- Scanning speed of HTS-1 will be achieved by the end of 2020
- Scanning speed of 25000 cm²/h/layer will be achieved in 2021
- Readout time necessary for each physics run will be less than 1 year (including the detector optimisation)

	S-UTS	HTS-1	HTS-2
	(OPERA)		under construction
Readout speed $[cm^2/h/layer]$	72	4700	25000
Field of view $[mm^2]$	0.052	25	50
Readable area $[m^2]$	0.0125	0.0125	0.1
Drive mode	Continuous	Step by step	Continuous

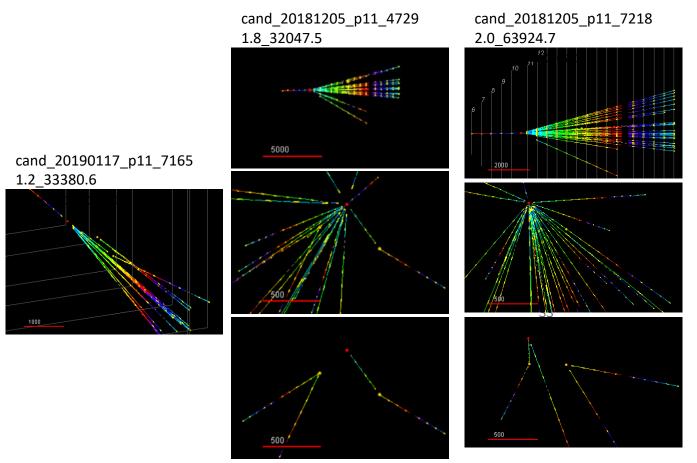
Proton beam angle structure



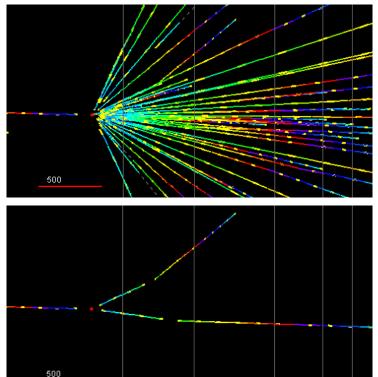

- Proton beam tracks were checked in detail
 - Tracks reconstructed in 20 emulsion films, thickness of 1.1 cm

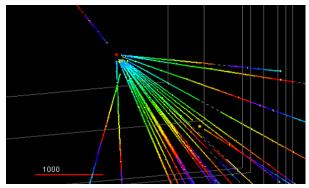

Reconstruction of proton interactions

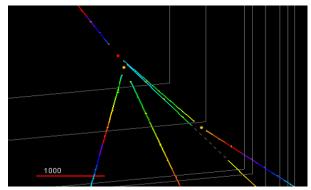
- Microscope data taking
 - \circ Pixel size = 0.3 μm x 0.3 μm x 2 μm
- > Data size
 - ~10 TB image data/film (125 cm²)
 - \circ ~~ ^50 PB ~ was processed in the 2018 pilot run (50 m^2)
 - 10 GB/film after compression to be stored
- Track density
 - \circ OPERA: 100 tracks/cm² in wide angular space (θ <500 mrad)
 - DsTau: 100,000 tracks/cm² in wide angular space (θ <10 mrad)



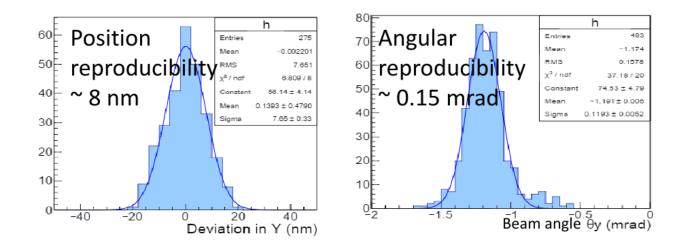
Vertex reconstruction

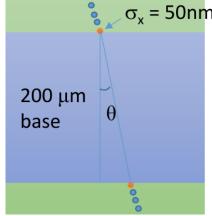






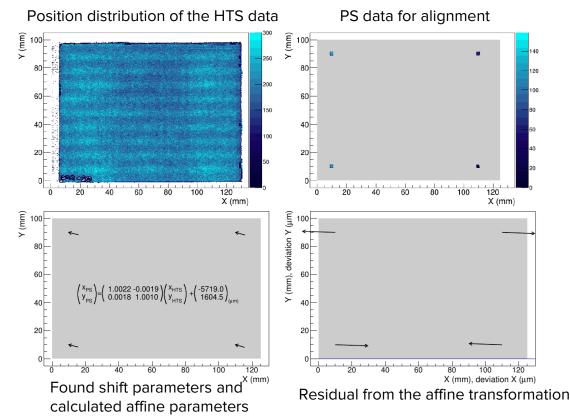
cand_20190117_p11_61598.3_476 32.7


cand_20190117_p11_61427.6_56 633.2



High precision measurement of track DsTau angles

- Intrinsic resolution of each grain = 50 nm
 - ▶ Two grains on top and bottom of 200 μ m base → 0.35 mrad
 - Discrimination of 2 mrad at 4σ level
- ✤ A high precision system with a Piezo-based Z axis developmented



Piezo objective scanner

Alignment between HTS and piezo-

