Production of ν_{τ} neutrinos and $\overline{\nu}_{\tau}$ antineutrinos - elaborate calculation for a fixed target experiment SHiP

Friday 31 July 2020 11:15 (15 minutes)

We discuss how to calculate cross sections as well as rapidity, transverse momentum and energy distributions of ν_{τ} and $\overline{\nu}_{\tau}$ produced from the direct $D_s^{\pm} \rightarrow \nu_{\tau}/\overline{\nu}_{\tau}$ and chain $D_s^{\pm} \rightarrow \tau^+/\tau^- \rightarrow \nu_{\tau}/\overline{\nu}_{\tau}$ decays in $p+^{96}$ Mo scattering with proton beam E_{lab} = 400 GeV \textit{i.e.} at \sqrt{s}_{NN} = 27.4 GeV. Both direct neutrinos and neutrinos from τ lepton decays (chain decays) are included. The τ decays are simulated with the help of the \textsc{Tauola} code and include large number of decay channels. In our calculations we include D_s^{\pm} from charm fragmentation ($c \rightarrow D_s^+$ and $\overline{c} \rightarrow D_s^-$) as well as those from

subleading fragmentation of strange quarks/antiquarks $s \to D_s^-$ and $\bar{s} \to D_s^+$. The $s \neq \bar{s}$ asymmetry of the strange quark content of proton is included. The different contributions to D_s^\pm and $\nu_\tau/\bar{\nu}_\tau$ are shown explicitly. We discuss and quantify a not discussed so far effect of asymmetries for production of ν_τ and $\bar{\nu}_\tau$ caused by (helicity) polarization of τ^\pm from the first (weak) decay $D_s^\pm \to \tau^\pm$. We try to estimate also effect of the production asymmetry caused by subleading fragmentation mechanism and discuss related uncertainties. A potential measurement of the asymmetry is discussed. Estimates of a number of observed $\nu_\tau/\bar{\nu}_\tau$ in the $\nu_\tau/\bar{\nu}_\tau + 2^{08}$ Pb reaction, with 2m long target are given with the help of the NuWro program. We refer also to the production of the high-energy (anti)neutrinos in the atmosphere.

R. Maciuła, A. Szczurek, J. Zaremba and I. Babiarz,

"Production asymmetry of ν_{τ} neutrinos and $\overline{\nu}_{\tau}$ antineutrinos from a fixed target experiment SHiP" J. High Energy Phys. 01, 116 (2020).

Secondary track (number)

Authors: MACIULA, Rafal (Institute of Nuclear Physics PAN); SZCZUREK, Antoni (Institute of Nuclear Physics)

Presenters: MACIULA, Rafal (Institute of Nuclear Physics PAN); SZCZUREK, Antoni (Institute of Nuclear Physics)

Session Classification: Neutrino Physics

Track Classification: 02. Neutrino Physics